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Abstract

Policy iteration is a well-studied algorithm for solving stationary Markov decision processes
(MDPs). It was recently extended to robust stationary MDPs. For robust nonstationary MDPs,
however, an “as is” execution of this algorithm is not possible because it would call for an infinite
amount of computation in each iteration. We therefore present a policy iteration algorithm for
robust nonstationary MDPs, which performs finitely implementable approximate variants of
policy evaluation and policy improvement in each iteration. We prove that the sequence of cost-
to-go functions produced by this algorithm monotonically converges pointwise to the optimal
cost-to-go function; the policies generated converge subsequentially to an optimal policy.

1 Introduction

Policy iteration is a classic algorithm for solving stationary Markov decision processes (MDPs)1 [9].
The algorithm starts with an initial policy, and, in each iteration, implements two steps: (i) policy
evaluation, where the current policy’s cost-to-go function is calculated, and (ii) policy improvement,
where the current policy is updated to a better policy that optimizes the Q-function of dynamic
programming; calculation of this Q-function utilizes the current policy’s value function from the
first step. When the state- and action-spaces are finite, this algorithm discovers an optimal policy
in a finite number of iterations (see Theorem 6.4.2 in [13]). In that case, policy iteration can be
viewed as a block-pivoting variant of the simplex algorithm applied to the linear programming (LP)
formulation of the MDP. A so-called simple version of policy iteration has also been studied in the
literature, and in fact, it was recently proven in [16] to exhibit strongly polynomial complexity. In
this variation, an action in only one state is updated in each iteration. This single state-action pair
is chosen so as to maximize the resulting improvement in the Q-function. This choice is akin to
Dantzig’s steepest descent pivoting rule for the corresponding simplex method.

Nonstationary MDPs are a generalization of stationary MDPs, where the problem data are no
longer assumed to be time-invariant [3, 4, 8]. An asymptotically convergent simple policy iteration
algorithm for these MDPs was developed recently in [7]. That paper also analyzed in detail a close
connection between this simple policy iteration and an infinite-dimensional simplex method.

In the above MDPs, the state transition probabilities are assumed to be known. Typically, these
transition probabilities are estimated statistically from historical data. The resulting estimation
errors are ignored in the above MDPs. Robust MDPs address this limitation by instead assuming
that the transition probabilities are only known to reside in the so-called “uncertainty sets.” Roughly

1Most MDPs discussed in this paper are finite-state, finite-action and infinite-horizon; we therefore omit such
qualifiers for brevity throughout, unless they are essential for clarity.
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speaking, the decision-maker then attempts to find a policy that optimizes the worst-case expected
cost over all transition probabilities from these uncertainty sets. Detailed analytical treatments of
robust MDPs are available in [2, 10, 12].

The classic policy iteration algorithm was extended to the robust case in [10]. For finite-
state, finite-action, stationary MDPs, it discovers a robust optimal policy in a finite number of
iterations. This result was proven in [10] by invoking Theorem 6.4.2 from [13]. In fact, the policy
iteration algorithm in [10] was presented for robust countable-state stationary MDPs. Hence, it
is, in principle, applicable to nonstationary MDPs because, as shown in [7], nonstationary MDPs
can be viewed as a special case of countable-state stationary MDPs by appending the states with
a time-index. An “as is” execution of this algorithm, however, is not possible for countable-state
or for nonstationary MDPs because it would call for infinite computations in both the policy
evaluation and policy improvement steps of every iteration. Specifically, an implementable and
provably convergent version of policy iteration is currently not available for robust nonstationary
MDPs. We develop such an algorithm in this paper.

The key idea in our approach is that it proposes finitely implementable approximations of
policy evaluation and simple policy improvement with steepest descent. These approximations are
designed adaptively such that the resulting sequence of policies has monotonically decreasing costs.
Moreover, the cost-improvement in consecutive iterations is large enough to guarantee convergence
to optimality (see [7] for a counterexample of a nonstationary MDP where simply guaranteeing a
cost-improvement in each iteration is not enough for convergence to optimality). These statements
are made precise in the next two sections. We focus on the simple version of policy iteration to
keep notation at a minimum, but our algorithm and proof of convergence can be generalized to a
full version without technical difficulty. The only change needed in this full version is that instead
of choosing a single period-state pair for updating an action, we select each pair that provides a
sufficient improvement.

2 Problem setup and algorithm

Consider a nonstationary MDP with decision epochs n = 1, 2, . . .. At the beginning of each period
n, the system occupies a state s ∈ S, where S = {1, 2, . . . , S} is a finite set. A decision-maker
observes this state and chooses an action a ∈ A, where A = {1, 2, . . . , A} is also a finite set. Given
that action a was chosen in state s in period n, the system makes a transition to state s′ at the
beginning of period n + 1 with probability pn(s′|s, a), incurring a nonnegative and bounded cost
0 ≤ cn(s, a, s′) ≤ c for some bound c. This process continues ad infinitum, starting the first period
in some initial state s1 ∈ S. A (deterministic Markovian) policy π is a mapping that prescribes
actions πn(s) in states s ∈ S in periods n ∈ N. The decision-maker’s objective is to find a policy that
simultaneously (for all s ∈ S and all n ∈ N) minimizes the infinite-horizon discounted expected cost
incurred on starting period n in state s. The single-period discount factor is denoted by 0 ≤ λ < 1.
We note, as an aside, that it is not possible in general to finitely describe the input data needed
to completely specify a nonstationary MDP. It is therefore standard in the literature to assume
the existence of a “forecast oracle” that, when queried by supplying a positive integer m, returns
the cost and probability data for the first m periods. We work in this paper with nonstationary
MDPs defined in this manner and refer the reader to [3, 5, 7] for detailed discussions of this issue.
Following the language of robust optimization, we will call the problem described in this paragraph
a nominal nonstationary MDP.
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In the above nominal MDP, the transition probabilities pn(s′|s, a) are assumed to be known.
Robust nonstationary MDPs account for estimation errors in these transition probabilities by in-
stead assuming that for each state-action pair (s, a) in period n, the (conditional) probability
mass function (pmf) pn(·|s, a) of the next state is only known to lie in some nonempty com-
pact set Pan,s. This set is called the uncertainty set and it is a subset of the probability simplex

M(S) = {q ∈ RS+ | q1 + . . . + qS = 1}. Specifically, robust nonstationary MPDs pursue an ad-
versarial modeling approach where the adversary, also often called “nature”, observes the state
s in period n as well as the action a chosen there by the decision-maker and then selects a pmf
pn(·|s, a) from the uncertainty set Pan,s. As per the standard “rectangularity assumption”, nature’s
pmf selection in n, s, a is assumed to be independent of the history of previously visited states and
actions and also of the actions chosen in other states (see [10, 12]). The decision-maker’s objective
is to find a policy that simultaneously (for all s ∈ S and all n ∈ N) minimizes the “worst-case”
(with respect to all possible adversarial choices) infinite-horizon discounted expected cost incurred
on starting period n in state s.

This finite-state, finite-action robust nonstationary MDP can be equivalently viewed as a robust
stationary MDP with the countable state-space S × N by appending states s with the time-index
n. Let v∗n(s) denote the decision-maker’s minimum worst-case cost, against all adversarial policies,
on starting period n ∈ N in state s ∈ S. The functions v∗n : S → R+ are called robust optimal
cost-to-go functions, and according to the theory of robust countable-state stationary MDPs from
[10], they are unique solutions of the Bellman’s equations

v∗n(s) = min
a∈A

{
max

pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λv∗n+1(s′)

])
︸ ︷︷ ︸

inner problem

}
, (1)

for s ∈ S and n ∈ N. Actions that achieve the outer minima in the above equations define a robust
optimal policy. Similarly, the infinite-horizon expected discounted cost incurred by implementing
a policy π starting in state s in period n is denoted by vπn(s). These costs-to-go are characterized
by the infinite system of equations

vπn(s) = max
pn(·|s,πn(s))∈Pπn(s)

n,s

(∑
s′∈S

pn(s′|s, πn(s))
[
cn(s, πn(s), s′) + λvπn+1(s′)

])
, s ∈ S, n ∈ N. (2)

For the robust nonstationary MDP described above, an “as is” execution of robust policy
iteration from [10] would roughly amount to the following algorithm. Start with an initial policy
π1. In iteration k ≥ 1, solve the infinite system of equations in (2) to obtain the cost-to-go function

vπ
k

of policy πk. This is the policy evaluation step. Then, update policy πk to a new policy πk+1

that prescribes an action from the set

argmin
a∈A

{
max

pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπ

k

n+1(s′)
])}

(3)

in each state s ∈ S in each period n ∈ N. This is the policy improvement step. Unfortunately, both
these steps require infinite computations, rendering this algorithm unimplementable.

We remedy the above situation by proposing approximate implementations of policy evaluation
and simple policy improvement. Specifically, in the policy evaluation step of the kth iteration,
the cost-to-go function of policy πk is approximated by the cost-to-go function of an m(k)-horizon
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truncation of that policy. In the simple policy improvement step of the kth iteration, an action
is updated in state s(k) in period n(k) somewhere in the first m(k)-periods via the steepest de-
scent rule applied to this cost-to-go function approximation. In order to guarantee that all actual
infinite-horizon costs vπ

k+1

n (s) of the resulting new policy πk+1 improve upon the actual infinite-

horizon costs vπ
k

n (s) of the old policy πk, the truncation-length m(k) is chosen adaptively via an
iterative procedure such that the corresponding steepest improvement in the m(k)-horizon cost-
approximations is large enough. In fact, the discussion in [7] and a counterexample in [6] show
that even in the context of nominal nonstationary MDPs, it is not enough (for value convergence
to optimality) to simply ensure that πk+1 improves upon πk; it is essential to guarantee that the
improvement is sufficiently large. As we shall see in Section 3, our choice of m(k) also carefully
handles this delicate issue. The details of this procedure are listed in Algorithm 1 below.

Algorithm 1 Simple policy iteration for robust nonstationary MDPs.

1: Initialize: Set iteration counter k = 1. Arbitrarily fix the initial policy π1 to one that prescribes
the first action in A in every state in every period. Let n(0) = 1.

2: for iterations k = 1, 2, 3, . . ., do
(a) Set m = n(k − 1). Let m(k) =∞ and γk,∞ = 0.
Approximate policy evaluation:

(b) Compute the m-horizon approximation vk,m of the cost-to-go function vπ
k

as

vk,mm+1(s) = 0, ∀s ∈ S, (4)

vk,mn (s) = max
pn(·|s,πkn(s))∈Pπ

k
n(s)

n,s

(∑
s′∈S

pn(s′|s, πkn(s))
[
cn(s, πkn(s), s′) + λvk,mn+1(s′)

])
, ∀s ∈ S, n ≤ m.

(5)

Approximate simple policy improvement:
(c) Compute the approximate Q-function

Qk,mn (s, a) = max
pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)

[
cn(s, a, s′) + λvk,mn+1(s′)

])
, s ∈ S, a ∈ A, n ≤ m. (6)

(d) Compute γk,mn (s, a) = λn−1
(
Qk,mn (s, a) − vk,mn (s)

)
, for s ∈ S, a ∈ A, and n ≤ m. Then

calculate the amount of steepest descent

γk,m = min
s∈S

a∈A,a 6=πkn(s)
1≤n≤m

γk,mn (s, a). (7)

(e) If γk,m < −λm c
1−λ , set m(k) = m, let (n(k), s(k), a(k)) be an argmin in (7), and update πk

to πk+1 by replacing πkn(k)(s(k)) with a(k); else set m = m+ 1 and go to Step 2(b) above.
3: end for

Note that although policy πk in the kth iteration of this algorithm is “infinite-dimensional”, it
is described finitely because (i) π1 is chosen such that it has a finite representation, and (ii) only
a single component is changed in each iteration. Consequently, πk can be stored on a computer.
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In addition, we emphasize that each iteration of this algorithm performs only a finite amount of
computations. We also make the minor observation that the value of m is initiated at n(k − 1) in
Step 2(a) of our algorithm, whereas m was initiated at 1 in the simple policy iteration algorithm
for nominal nonstationary MDPs in [7]. This initial value of m = 1 was inefficient (in the sense
that it called for unnecessary additional computations) because m(k) is bounded below by n(k−1)
in their nominal case as well as in our robust case. This holds because the steepest descent action
in the kth iteration cannot be found for a horizon m shorter than n(k− 1) as policies πk−1 and πk

prescribe identical actions in the first n(k − 1)− 1 periods.

We prove in the next section that the sequence of costs vπ
k

n (s) corresponding to the policies πk

produced by this algorithm monotonically converges pointwise to the optimal costs v∗n(s) as k →∞.
We also establish subsequential convergence of the corresponding policies πk to an optimal policy.
The main ideas in our algorithm and proofs are similar to the aforementioned recent work on simple
policy iteration for nominal nonstationary MDPs [7]; the details are modified to accommodate our
robust counterpart. For instance, the proofs in [7] for the nominal case thoroughly exploited the
close connection between simple policy iteration and an infinite-dimensional simplex algorithm with
the steepest descent pivoting rule. We cannot pursue that approach here because robust MDPs do
not have an equivalent LP formulation (see [10]).

3 Convergence results

Our two main convergence results in this paper appear toward the end of this section in Theorems
3.7 and 3.8. The proofs of these two theorems utilize several lemmas that we prove next.

The lemma below establishes a simple, fundamental property of Bellman’s equations.

Lemma 3.1. Suppose policy π is not optimal. Then there exist a state s ∈ S, an action a ∈ A,
and a period n ∈ N such that

Qπn(s, a) = max
pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπn+1(s′)

])
< vπn(s). (8)

Proof. Suppose not. Then, for each n ∈ N and each s ∈ S, we have,

max
pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπn+1(s′)

])
≥ vπn(s), ∀a ∈ A.

Consequently, for each n ∈ N and each s ∈ S, we obtain,

vπn(s) = max
pn(·|s,πn(s))∈Pπn(s)

n,s

(∑
s′∈S

pn(s′|s, πn(s))
[
cn(s, πn(s), s′) + λvπn+1(s′)

])

≥ min
a∈A

{
max

pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπn+1(s′)

])}
≥ vπn(s).

This shows that, for each n ∈ N and each s ∈ S,

vπn(s) = min
a∈A

{
max

pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπn+1(s′)

])}
.
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This shows that the cost-to-go functions vπn satisfy Bellman’s equations. Then π must be optimal.
This is a contradiction.

Within each iteration, our algorithm computes an m-horizon approximation vk,m to the true
infinite-horizon cost-to-go function vπ

k
of the policy πk. The lemma below provides bounds for the

quality of this approximation.

Lemma 3.2. The approximation vk,m of vπ
k

in Step 2(b) of Algorithm 1 satisfies

vk,mn (s) ≤ vπkn (s) ≤ vk,mn (s) + λm+1−n c

1− λ
, ∀s ∈ S, n = 1, 2, . . . ,m+ 1. (9)

Proof. We prove the claim by backward induction on n = m+ 1,m, . . . , 1.

Since the costs are nonnegative and bounded above by c, we know that vπ
k

satisfies 0 ≤
vπ

k

m+1(s) ≤ c/(1− λ). Also, vk,mm+1(s) = 0 for all s ∈ S by (4). So, for n = m+ 1, we trivially have,

vk,mm+1(s) ≤ vπkm+1(s) ≤ vk,mm+1(s) + λm+1−n c

1− λ
, ∀s ∈ S.

Now, assume, as the inductive hypothesis, that the claim is true for n+ 1. That is,

vk,mn+1(s′) ≤ vπkn+1(s′) ≤ vk,mn+1(s′) + λm−n
c

1− λ
, ∀s′ ∈ S.

After multiplying each term by λ and then adding cn(s, a, s′) to all terms, this implies that

cn(s, a, s′) + λvk,mn+1(s′) ≤ cn(s, a, s′) + λvπ
k

n+1(s′) ≤ cn(s, a, s′) + λvk,mn+1(s′) + λm+1−n c

1− λ
,

for all s, s′ ∈ S and a ∈ A. Consequently, for the specific actions πkn(s) prescribed by the policy
πk, we have,

cn(s, πkn(s), s′)+λvk,mn+1(s′) ≤ cn(s, πkn(s), s′)+λvπ
k

n+1(s′) ≤ cn(s, πkn(s), s′)+λvk,mn+1(s′)+λm+1−n c

1− λ
,

for all s, s′ ∈ S. Now, for a fixed s ∈ S, consider any pmf pn(·|s, πkn(s)) ∈ Pπ
k
n(s)

n,s . By multiplying
the above inequalities with this pmf and then adding over all s′ ∈ S, we obtain,∑
s′∈S

pn(s′|s, πkn(s))
[
cn(s, πkn(s), s′) + λvk,mn+1(s′)

]
≤
∑
s′∈S

pn(s′|s, πkn(s))
[
cn(s, πkn(s), s′) + λvπ

k

n+1(s′)
]

≤
∑
s′∈S

pn(s′|s, πkn(s))
[
cn(s, πkn(s), s′) + λvk,mn+1(s′)

]
+ λm+1−n c

1− λ
.

Then, by taking the maximum of each side of these inequalities over all such pmfs in Pπ
k
n(s)

n,s , we
obtain,

max
pn(·|s,πkn(s))∈Pπ

k
n(s)

n,s

(∑
s′∈S

pn(s′|s, πkn(s))
[
cn(s, πkn(s), s′) + λvk,mn+1(s′)

])

≤ max
pn(·|s,πkn(s))∈Pπ

k
n(s)

n,s

(∑
s′∈S

pn(s′|s, πkn(s))
[
cn(s, πkn(s), s′) + λvπ

k

n+1(s′)
])
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≤ max
pn(·|s,πkn(s))∈Pπ

k
n(s)

n,s

(∑
s′∈S

pn(s′|s, πkn(s))
[
cn(s, πkn(s), s′) + λvk,mn+1(s′)

])
+ λm+1−n c

1− λ
.

These maxima preserve the order of the earlier inequalities because of the following property: if
one function is everywhere smaller than another function, then the maximum of the first function
is smaller than the maximum of the second function provided that the maxima are taken over
identical sets. Then, by (2) and (5), we have,

vk,mn (s) ≤ vπkn (s) ≤ vk,mn (s) + λm+1−n c

1− λ
, ∀s ∈ S.

This restores the inductive hypothesis and completes the proof by induction.

Step 2 of the algorithm iteratively increases the value of the approximating horizon’s length m
until a horizon that guarantees a large enough improvement is discovered. The algorithm thus runs
the risk of being caught in an infinite loop, wherein it never discovers such a horizon. The next
lemma tackles this issue.

Lemma 3.3. Step 2 of Algorithm 1 terminates at a finite value of m if and only if policy πk is not
optimal.

Proof. Suppose πk is not optimal. Then, by Lemma 3.1, there exist a period n ∈ N, s ∈ S, and an
action a ∈ A such that Qπ

k

n (s, a) < vπ
k

n (s). Thus, let ε = vπ
k

n (s)−Qπkn (s, a) > 0. Then, by Lemma
3.2, we have,

ε = vπ
k

n (s)−Qπkn (s, a) = vπ
k

n (s)− max
pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπ

k

n+1(s′)
])

≤ vk,mn (s) + λm+1−n c

1− λ
− max
pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvk,mn+1(s′)

])
= vk,mn (s) + λm+1−n c

1− λ
−Qk,mn (s, a) = λ1−n

(
λm

c

1− λ
− λn−1

(
Qk,mn (s, a)− vk,mn (s)

))
≤ λ1−n

(
λm

c

1− λ
− γk,m

)
.

where the last inequality holds by the definition of γk,m in Step 2(d) of the algorithm. This
inequality yields λ1−nγk,m ≤ λm+1−n c

1−λ−ε. For a sufficiently large m, we have that λm+1−n c
1−λ <

ε/2 because 0 ≤ λ < 1. Therefore, for any such large m, we have, λm+1−n c
1−λ − ε < −ε/2 <

−λm+1−n c
1−λ . Thus, we obtain, λ1−nγk,m < −λm+1−n c

1−λ , that is, γk,m < −λm c
1−λ . Thus, if the

policy πk is not optimal, there exists a large enough m for which the stopping condition in Step
2(e) of the algorithm is satisfied, and Step 2 terminates finitely.

Conversely, suppose policy πk is optimal, and Step 2 of the algorithm terminates for some m(k).

Then, γk,m(k)+λm(k) c
1−λ < 0. That is, γ

k,m(k)
n(k) (s(k), a(k))+λm(k) c

1−λ < 0, where (n(k), s(k), a(k)) is

the argmin in (7) with a(k) 6= πkn(k)(s(k)). That is, λ1−n(k)γ
k,m(k)
n(k) (s(k), a(k))+λm(k)+1−n(k) c

1−λ < 0.

Then, by the definition of γ
k,m(k)
n(k) (s(k), a(k)), this implies that Q

k,m(k)
n(k) (s(k), a(k))− vk,m(k)

n(k) (s(k)) +

λm(k)+1−n(k) c
1−λ < 0. Then, by using the definition of Q

k,m(k)
n(k) (s(k), a(k)) as in (6), we get,

max
pn(k)(·|s(k),a(k))∈Pa(k)

n(k),s(k)

(∑
s′∈S

pn(k)(s
′|s(k), a(k))

[
cn(s(k), a(k), s′) + λv

k,m(k)
n(k)+1(s′)

])
−
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v
k,m(k)
n(k) (s(k)) + λm(k)+1−n(k) c

1− λ
< 0.

By applying Lemma 3.2, the above strict inequality implies that Qπ
k

n(k)(s(k), a(k)) < vπ
k

n(k)(s(k)). In

other words, the optimal cost-to-go function vπ
k

violates Bellman’s equation (1) in state s(k) in
period n(k). But this contradicts the optimality of πk. This completes the proof of the lemma.

The lemma implies that if πk is optimal, then Step 2 of the algorithm never terminates. One
subtlety here is that the algorithm therefore cannot tell that it has discovered an optimal policy.
As explained in more detail in [7], this, however, is not a limitation of our algorithm. Rather, it
is rooted in a fundamental property of nonstationary sequential decision problems that optimality
cannot be verified, in general, with finite computation.

The next lemma shows that, despite the approximations they employ, our policy evaluation
and simple policy improvement steps produce a sequence of policies with nonincreasing cost-to-go
functions.

Lemma 3.4. Suppose policy πk is not optimal. Then vπ
k+1

n (s) ≤ vπ
k

n (s) for all periods n ∈ N
and all states s ∈ S, with this inequality being strict when n = n(k) and s = s(k). Furthermore,

vπ
k+1

n(k) (s(k))− vπkn(k)(s(k)) ≤ λ1−n(k)

(
λm(k) c

1−λ + γk,m(k)

)
.

Proof. Since policy πk is not optimal, Step 2 of the algorithm terminates at some m(k) by Lemma
3.3. Also, policies πk+1 and πk differ only in the actions they prescribe in period n(k) ≤ m(k) in

state s(k). Consequently, vπ
k+1

n (s) = vπ
k

n (s) for all s ∈ S and all n > n(k). Similarly, vπ
k+1

n(k) (s) =

vπ
k

n(k)(s) for all s(k) 6= s ∈ S. Moreover, (2) implies that

vπ
k+1

n(k) (s(k)) = max
pn(·|s(k),a(k))∈Pa(k)

n(k),s(k)

(∑
s′∈S

pn(k)(s
′|s(k), a(k))

[
cn(k)(s(k), a(k), s′) + λvπ

k+1

n(k)+1(s′)
])

= max
pn(·|s(k),a(k))∈Pa(k)

n(k),s(k)

(∑
s′∈S

pn(k)(s
′|s(k), a(k))

[
cn(k)(s(k), a(k), s′) + λvπ

k

n(k)+1(s′)
])

≤ max
pn(·|s(k),a(k))∈Pa(k)

n(k),s(k)

(∑
s′∈S

pn(k)(s
′|s(k), a(k))

[
cn(k)(s(k), a(k), s′)+

λ

(
v
k,m(k)
n(k)+1(s′) + λm(k)−n(k) c

1− λ

)])
= max

pn(·|s(k),a(k))∈Pa(k)
n(k),s(k)

(∑
s′∈S

pn(k)(s
′|s(k), a(k))

[
cn(k)(s(k), a(k), s′) + λv

k,m(k)
n(k)+1(s′)

])
+

λm(k)+1−n(k) c

1− λ
,

= Q
k,m(k)
n(k) (s(k), a(k)) + λm(k)+1−n(k) c

1− λ
= λ1−n(k)γk,m(k) + v

k,m(k)
n(k) (s(k)) + λm(k)+1−n(k) c

1− λ
≤ λ1−n(k)γk,m(k) + vπ

k

n(k)(s(k)) + λm(k)+1−n(k) c

1− λ
< vπ

k

n(k)(s(k)).

Here, the first inequality follows by Lemma 3.2, the penultimate equality holds by the definition

in (6) of Q
k,m(k)
n(k) (s(k), a(k)), the last equality holds by the definition of γk,m(k), the penultimate
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inequality holds by Lemma 3.2, and finally, the strict inequality follows by the stopping condition
in Step 2(e). In summary, we have shown that vπ

k+1

n(k) (s(k)) < vπ
k

n(k)(s(k)) and that vπ
k+1

n(k) (s(k)) −

vπ
k

n(k)(s(k)) < λ1−n(k)

(
λm(k) c

1−λ + γk,m(k)

)
. Now we complete the rest of the proof by induction

on n = n(k), n(k) − 1, . . . , 1. To start off this induction process, we note that the argument thus

far has established that vπ
k+1

n (s) ≤ vπ
k

n (s), for all s ∈ S and n = n(k). Now, as the inductive

hypothesis, suppose that vπ
k+1

n (s) ≤ vπ
k

n (s), for all s ∈ S and some n ≤ n(k). Then, from (2), we
have, for each s ∈ S, that

vπ
k+1

n−1 (s) = max

pn−1(·|s,πk+1
n−1(s))∈P

πk+1
n−1(s)

n−1,s

(∑
s′∈S

pn−1(s′|s, πk+1
n−1(s))

[
cn−1(s, πk+1

n−1(s), s′) + λvπ
k+1

n (s′)
])

= max

pn−1(·|s,πkn−1(s))∈P
πkn−1(s)

n−1,s

(∑
s′∈S

pn−1(s′|s, πkn−1(s))
[
cn−1(s, πkn−1(s), s′) + λvπ

k+1

n (s′)
])

≤ max

pn−1(·|s,πkn−1(s))∈P
πkn−1(s)

n−1,s

(∑
s′∈S

pn−1(s′|s, πkn−1(s))
[
cn−1(s, πkn−1(s), s′) + λvπ

k

n (s′)
])

= vπ
k

n−1(s).

Here, the second equality holds because πk+1 and πk prescribe identical actions in all states in
period n− 1, the inequality holds by the inductive hypothesis, and the last equality follows by the
definition of vπ

k

n−1(s). This restores the inductive hypothesis and completes our proof.

Lemma 3.5. We have that
[
λm(k) c

1−λ + γk,m(k)
]
→ 0 as k →∞.

Proof. Observe that if πk is optimal for any k, then, by Lemma 3.3, Step 2 of the algorithm

does not terminate finitely; hence
[
λm(k) c

1−λ + γk,m(k)
]

= 0 because the algorithm is initiated

with m(k) = ∞ and γk,∞ = 0 and hence the claim holds. Now suppose that πk is not optimal

for any k. The algorithm thus produces a sequence of solutions vπ
k
. Now define, for each k,

fk =
∑
n∈N

∑
s∈S

λn−1vπ
k

n (s) and let δk = fk+1− fk. Then, since the sum fk is finite for all k, we have,

δk =
∑
n∈N

∑
s∈S

λn−1
[
vπ

k+1

n (s)− vπkn (s)
]
≤ λn(k)−1

[
vπ

k+1

n(k) (s(k))− vπkn(k)(s(k))
]

≤ γk,m(k) + λm(k) c

1− λ
< 0,

where the first inequality follows since every term in the sum is non-positive, the second inequality
holds by the second claim in Lemma 3.4, and the last inequality follows from the stopping condition
in Step 2(e) of the algorithm. That is, fk is a nonnegative decreasing sequence of real numbers,
hence it converges. This implies that δk → 0 as k →∞. Since δk ≤ γk,m(k) + λm(k) c

1−λ < 0 for all
k, the second claim holds.

The sequence of approximating horizons m(k) in not monotonically increasing in k. The next
lemma shows that it nevertheless diverges to infinity as k →∞. This also implies that the amount
of steepest descent improvement converges to zero.

Lemma 3.6. The sequence m(k)→∞ as k →∞. Also, γk,m(k) → 0 as k →∞.

9



Proof. Identical to the proof of Lemma 5.7 in [7] hence omitted.

Theorem 3.7 (Value Convergence). The sequence of cost-to-go functions produced by Algorithm
1 converges pointwise to the optimal cost-to-go function. That is,

lim
k→∞

vπ
k

n (s) = v∗n(s) for all n ∈ N, s ∈ S. (10)

Proof. Policies for the nonstationary MDP lie in the strategy space Φ =
∞∏
n=1
AS ⊂

∞∏
n=1

RS , which

is compact in the metrizable product topology by Tychonoff’s product theorem (see Theorem 2.61
on page 52 of [1]). In fact, ρ(·, ·) defined by

ρ(π, π̃) =
∞∑
n=1

1

2n

(
d(πn, π̃n)

1 + d(πn, π̃n)

)
where d(·, ·) is the Euclidean metric on RS , is an example of a metric which induces the product

topology on
∞∏
n=1

RS (see Theorem 3.36 on page 89 of [1]). Further, the cost-to-go functions lie

in the set V =

{
v ∈

∞∏
n=1

RS : 0 ≤ vn(s) ≤ c
1−λ , n ∈ N, s ∈ S

}
. Again, by Tychonoff’s theorem,

V ⊂
∞∏
n=1

RS is compact in the metrizable product topology. Since Φ is compact, the sequence of

policies πk has a convergent subsequence πki . Let π̄ be the limit of this sequence. By the same
reasoning, the corresponding sequence of cost-to-go functions vπ

ki has a convergent subsequence,

vπ
kij

, whose limit is, say, v̄.

We first show that v̄ = vπ̄, that is, v̄ is the cost-to-go function corresponding to the policy π̄.

Consider any n ∈ N and s ∈ S. Then, for any j,

vπ
kij

n (s)− max

p(·|s,π
kij
n (s))∈Pπ

kij
n (s)

n,s

∑
s′∈S

p(s′|s, π
kij
n (s))

[
cn(s, π

kij
n (s), s′) + λv

kij
n+1(s′)

]
= 0.

Now, since πkij → π̄ in the product topology, we have that π
kij
n (s) → π̄n(s) as j → ∞. Since

A is a finite set, this implies that there exists a number J(n, s) such that for all j ≥ J(n, s),

π
kij
n (s) = π̄n(s). Hence, for all j ≥ J(n, s), the sets Pπ

kij
n (s)

n,s and P π̄n(s)
n,s are identical, and we have,

vπ
kij

n (s)− max
p(·|s,π̄n(s))∈P π̄n(s)

n,s

∑
s′∈S

p(s′|s, π̄n(s))
[
cn(s, π̄n(s), s′) + λv

kij
n+1(s′)

]
= 0. (11)

For each fixed p(·|s, π̄n(s)) ∈ P π̄n(s)
n,s , we have,

vπ
kij

n (s)−
∑
s′∈S

p(s′|s, π̄n(s))
[
cn(s, π̄n(s), s′) + λv

kij
n+1(s′)

]
≥ 0.

Taking limits as j →∞, this yields,

v̄n(s)−
∑
s′∈S

p(s′|s, π̄n(s))
[
cn(s, π̄n(s), s′) + λv̄n+1(s′)

]
≥ 0,
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for all p(·|s, π̄n(s)) ∈ P π̄n(s)
n,s . This implies

v̄n(s)− max
p(·|s,π̄n(s))∈P π̄n(s)

n,s

∑
s′∈S

p(s′|s, π̄n(s))
[
cn(s, π̄n(s), s′) + λv̄n+1(s′)

]
≥ 0. (12)

Now, we show that inequality (12) cannot be strict. For each j ≥ J(n, s), let pkij (·|s, π̄n(s)) be an
argmax in (11). Then, we rewrite (11) as

vπ
kij

n (s)−
∑
s′∈S

pkij (s′|s, π̄n(s))
[
cn(s, π̄n(s), s′) + λv

kij
n+1(s′)

]
= 0.

Note that as P π̄n(s)
n,s is a compact subset of RS , the sequence {pkij (·|s, π̄n(s)), j ≥ J(n, s)} has a

convergent subsequence p
kijl . Let p̄(·|s, π̄n(s)) be the limit of this subsequence. For each l, we have,

v
kijl
n (s)−

∑
s′∈S

p
kijl (s′|s, π̄n(s))

[
cn(s, π̄n(s), s′) + λv

kijl
n+1(s′)

]
= 0.

Taking limits as l→∞, this gives us

v̄n(s)−
∑
s′∈S

p̄(s′|s, π̄n(s))
[
cn(s, π̄n(s), s′) + λv̄n+1(s′)

]
= 0.

Hence, the inequality in (12) must be an equality, and we have

v̄n(s)− max
p(·|s,π̄n(s))∈P π̄n(s)

n,s

∑
s′∈S

p(s′|s, π̄n(s))
[
cn(s, π̄n(s), s′) + λv̄n+1(s′)

]
= 0. (13)

Since the above is true for all (n, s), we have proved that the limiting cost-to-go function v̄ is the
evaluation of the limiting policy π̄, and we denote it by vπ̄.

We now show, by contradiction, that the limiting policy π̄ must be optimal. Suppose π̄ is not
optimal. Then, by Lemma 3.1, there exists a period n, a state s and an action a such that

0 < ε = vπ̄n(s)−Qπ̄n(s, a)

= vπ̄n(s)− max
pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπ̄n+1(s′)

])
. (14)

For any j, let p
kij
n (·|s, a) be the argmax in

Qπ
kij

n (s, a) = max
pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)

[
cn(s, a, s′) + λvπ

kij

n+1 (s′)

])
.

As before, the sequence p
kij
n (·|s, a) has a convergent subsequence p

kijl
n (·|s, a). Let p̄n(·|s, a) be the

limit of this subsequence. Then, we have,

lim
l→∞

(
vπ

kijl

n (s)−Qπ
kijl

n (s, a)

)
= lim

l→∞

(
v
kijl
n (s)−

∑
s′∈S

p
kijl
n (s′|s, a)

[
cn(s, a, s′) + λvπ

kijl

n+1 (s′)

])
= vπ̄n(s)−

∑
s′∈S

p̄n(s′|s, a)
[
cn(s, a, s′) + λvπ̄n+1(s′)

]
11



≥ vπ̄n(s)− max
pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπ̄n+1(s′)

])
= ε.

Then, there exists an integer L such that for l ≥ L,

ε/2 < vπ
kijl

n (s)−Qπ
kijl

n (s, a) = vπ
kijl

n (s)− max
pn(·|s,a)∈Pan,s

(∑
s′∈S

p
kijl
n (s′|s, a)

[
cn(s, a, s′) + λvπ

kijl

n+1 (s′)

])
.

Since m(k) → ∞, we have that for large enough l, m(kijl ) ≥ n. Then, applying Lemma 3.2 gives
us that

ε/2 < v
kijl

,m(kijl
)

n (s) + λ
m(kijl

)+1−n c

1− λ

− max
pn(·|s,a)∈Pan,s

(∑
s′∈S

p
kijl
n (s′|s, a)

[
cn(s, a, s′) + λv

kijl
,m(kijl

)

n+1 (s′)

])
≤ λm(kijl

)+1−n c

1− λ
− λ1−nγ

kijl
,m(kijl

)
= λ1−n

(
λ
m(kijl

) c

1− λ
− γkijl ,m(kijl

)
)
.

But this contradicts the fact from Lemma 3.6 that both λ
m(kijl

) c
1−λ and γ

kijl
,m(kijl

)
converge to

zero as l→∞. Hence, our assumption is false and the limiting policy π̄ must be optimal.

We remark that so far we have only proven that vπ
k

converges subsequentially to the optimal
value function v∗. But from Lemma 3.4, we know that each component vπ

k

n (s) is a nonincreasing
sequence of nonnegative real numbers, and therefore must converge. This combined with the
subsequential convergence proves that lim

k→∞
vπ

k

n (s) = v∗n(s) for all s ∈ S and n ∈ N.

Theorem 3.8 (Policy Convergence). For any ε > 0, there exists an iteration counter kε such that
ρ(πk, π∗k) < ε for some optimal policy π∗k, for all k ≥ kε. In fact, if the MDP has a unique optimal
policy π∗, then lim

k→∞
πk = π∗. Further, for every period n, there exists an iteration counter Kn such

that for all k ≥ Kn, actions πkm(s) are optimal for the robust non-stationary MDP in all states
s ∈ S and all periods m ≤ n.

Proof. We prove the first claim by contradiction. Suppose this is not true. Then, there exists an
ε > 0 and a subsequence πki of πk such that ρ(πki , π) > ε for all optimal policies π, for all i ∈ N.

Since the space of all policies is compact, the sequence πki has a convergent subsequence πkij , whose
limit is, say, π̄. Then, there exists an integer J such that ρ(πkij , π̄) < ε for all j ≥ J . Further, as
in the proof of Theorem 3.7, π̄ must be an optimal policy. This leads to a contradiction. Hence,
the first claim is true.

Further, suppose that π∗ is the unique optimal policy. Then, as shown above, for every ε > 0,
there exists an integer kε, such that ρ(πk, π∗) < ε for all k ≥ kε. This implies that lim

k→∞
πk = π∗.

Now, for the third claim, we note that the result is trivially true if πk is optimal for some k.
When this is not the case, we first claim that given ε > 0 and any period n, there exists an iteration
counter Kn such that for all k ≥ Kn, |πkm(s)−πk∗m (s)| < ε, for all m ≤ n and for all s ∈ S, for some
optimal policy πk∗. Suppose not. Then, there exists a subsequence ki, and for each i, a period
mi ≤ n and state si ∈ S such that |πkimi(si)− π

∗
mi(si)| ≥ ε for all i, for all optimal policies π∗. But

12



ki has a further subsequence kij such that πkij converges to an optimal policy π̄ as in the proof of
Theorem 3.8. This leads to a contradiction. Now, fix 0 < ε < 1 and a period n, and consider any
iteration k ≥ Kn. For any m ≤ n and s ∈ S, we have, |πkm(s)−πk∗m (s)| < ε for some optimal action
πk
∗
m (s). Then, since ε < 1 and πkm(s), πk∗m (s) ∈ A = {1, 2, . . . , A}, we have πkm(s) = πk∗m (s). This

proves that all actions up to period n are optimal for policies πk with k ≥ Kn.

We comment that this type of subsequential convergence is the most one can obtain, in gen-
eral without exploiting any problem-specific features, in infinite-horizon nonstationary sequential
decision problems [14, 15].

In this paper, we did not consider the question of how to solve the inner maximization problems
in (5) and (6) within Algorithm 1. These problems can be solved by following standard procedures
from robust MDPs, and in particular, this can be done efficiently when the uncertainty sets Pan,s
are convex. We refer the readers to [2, 10, 12] for detailed discussions of this issue.

As we stated in Section 1, nonstationary MDPs are a special case of countable-state stationary
MDPs. The simple policy iteration algorithm for nonstationary MDPs in [7] was recently extended
to countable-state stationary MDPs in [11]. Along similar lines, it may be possible in the future to
extend our work in this paper to robust countable-state stationary MDPs.
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