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Abstract

Organ transplantation is an increasingly common therapy for many types of end-stage organ

failure, including lungs, hearts, kidneys and livers. The past twenty years have seen increased

scrutiny of post-transplant outcomes in the United States, in order to ensure the efficient utiliza-

tion of the scarce organ supply. Under regulations by the Organ Procurement Transplantation

Network (OPTN) and Centers for Medicare and Medicaid (CMS), the United States has seen a

rise in risk-averse patient selection among transplant programs, resulting in decreased transplan-

tation volume for some programs. Despite this observed decrease, the response of transplant

programs to OPTN/CMS regulations remains poorly understood. In this work, we consider

the perspective of a transplant program which seeks to simultaneously maximize transplant

volume and control the risk of OPTN/CMS penalization. Using a chance-constrained mixed-

integer programming model, we demonstrate that under certain conditions, it may be rational

for a transplant program to curtail its transplant volume in order to avoid penalization un-

der OPTN/CMS regulations. This finding, which confirms empirical results observed in the

clinical literature, suggests that such regulations may be inherently unsuitable for use in in-

centivizing improved program performance. We also highlight other structural shortcomings of

OPTN/CMS regulations which have not been observed previously in the literature.
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1 Introduction

Organ transplantation is the most effective, and often the only viable, therapy for end-stage organ

failure such as chronic obstructive lung disease, end-stage liver disease, and end-stage renal disease.

Unfortunately, the supply of transplantable organs has not kept pace with the demand, leading to

a significant waiting list for transplantation—as of early 2021, there are more than 100,000 patients

on various transplant waiting lists in the United States (OPTN Database 2021). The limited access

to transplant necessitates the efficient utilization of the available supply of organs. However, not

all transplant programs are equally proficient at turning organs into successful transplants (Buccini

et al. 2014, Nassir et al. 2015). In order to ensure that available organs are being effectively used

for treatment, the last twenty years have seen increased scrutiny of transplant program operations

and outcomes. (In keeping with recently issued federal guidelines, we use the term program to refer

to the transplantation of a single organ. A hospital that performs both lung and kidney transplants

contains two transplant programs.)

This scrutiny has led to the implementation of two closely-related sets of requirements on

post-transplant outcomes (McDiarmid et al. 2008, Ho et al. 2015). The first of these is overseen

by the Organ Procurement and Transplantation Network (OPTN), a public-private partnership

contracted by the United States Department of Health and Human Services (HHS), whose goal is

to increase access to transplantation and improve post-transplant survival (OPTN Database 2021).

The second set of regulations was overseen by the Centers for Medicare and Medicaid Services

(CMS), an agency contained within HHS. The CMS regulations were in effect from June 30, 2007

until November 29, 2019 (the OPTN regulations are still in effect).

Broadly speaking, both sets of regulations function as follows: a regulatory agency (OPTN or

CMS) considers all of the transplants performed by a program over a period of two and a half

years. Regulators compare the actual number of transplants which resulted in a graft failure within

one year of the transplant date and the expected number of one-year post-transplant graft failures

based on the experience of similar programs nationwide. If the observed number of failures “far

exceeds” the expected number, then the transplant program is subject to penalties.

Despite their stated goals of improving transplant outcomes, CMS regulations in particular led

to adverse unintended consequences (Schold et al. 2010, 2013, Massie and Segev 2013). Because

these regulations focused only on post-transplant outcomes for evaluation, many clinicians and

stakeholders expressed concern that programs might have an incentive to be more selective when
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determining their patient mix, potentially rejecting some patients that seem risky (i.e., not likely

to survive after transplantation) (Abecassis et al. 2009, Kasiske et al. 2012, Schold et al. 2013,

Schold and Axelrod 2014, Dolgin et al. 2016). Indeed, there is evidence that the number of patients

accepted at certain programs declined—sometimes substantially—exacerbating the limited access

to transplant (Schold et al. 2013, White et al. 2015, Dolgin et al. 2016).

In this paper, we study the problem of regulatory-induced risk aversion from the perspective

of the transplant program. As we will discuss in detail in Section 3, there is debate in the clinical

literature over the impact of these regulations on programs’ behavior. What is missing from this

debate is a quantitative understanding of the rational response of transplant programs in the

face of these regulations. Consequently, the goal of this work is to characterize the response of

a rational program to outcome-based regulations such as those used by OPTN and CMS. Our

results are particularly significant to regulators, as they provide rigorous theoretical evidence for

the existence of several unintended consequences and misaligned incentives of the regulations which

had previously been observed only empirically.

The main contributions of this paper are as follows:

• We develop the first optimization framework to model organ transplantation under outcome-

based regulation from the perspective of a transplant program. Our work is the first in the

operations research literature to study the organ transplantation process from the perspec-

tive of the transplant program itself, rather than the perspective of regulators or individual

patients.

• Using data provided by Houston Methodist Hospital, our numerical experiments describe

realistic conditions under which it is optimal for a program to decrease the number of patients

it adds to its waitlist in order to control the risk of regulatory penalization. However, we also

demonstrate that under certain conditions, decreasing the number of patients accepted to the

waitlist may increase the probability of penalization. This finding suggests that controlling

penalization risk through adverse patient selection could be extremely difficult in practice,

and may indeed increase penalization risk if performed poorly.

• We identify several shortcomings of CMS/OPTN regulations. In particular, we demonstrate

that the regulations can lead to increased selectivity by programs—likely exacerbating the

already significant mismatch between organ supply and demand—even when the risk adjust-

ment used to model expected outcomes is adequate. We also demonstrate that the regula-
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tions may unfairly penalize medium-sized programs, a result which has not been previously

observed. Moreover, our model quantifies which patients may be most at risk of adverse

selection from programs.

• Our results provide insights to policymakers by quantitatively characterizing the response of

rational programs to outcome-based regulations. Our model can be used to explore the effects

of potential changes to the regulations, which we demonstrate in the numerical experiments.

For the remainder of the paper, we focus exclusively on lung transplantation programs. Lungs

are the fourth most transplanted organ in the United States, and the total number of lung trans-

plants has increased steadily in the past decade (OPTN Database 2021). However, lungs have

received very little attention in the operations research literature, which has focused mostly on kid-

ney and liver transplants. Moreover, as we discuss in the following sections, lung transplantation is

somewhat unique compared to other organs—for example, wait times to receive a lung transplant

in the US are far shorter than for other organs, and donor organ quality is less variable than other

organs. These features provide a unique modeling advantage, allowing us to focus solely on the

effects of the regulations, without considering complicating factors like waitlist dynamics or donor

matching.

The remainder of this paper is organized as follows. Section 2 briefly outlines the history and

structure of the OPTN and CMS regulations. Section 3 reviews relevent literature from both

the operations research and clinical communities. In Section 4, we introduce a model of rational

program behavior in response to OPTN/CMS regulation, which we analyze in Section 5. Section 6

contains a series of computational experiments. Concluding remarks are given in Section 7. Omitted

proofs and additional technical details can be found in the appendix.

2 Overview and History of OPTN and CMS Regulations

In 2000, HHS granted OPTN increased authority to monitor the performance of transplant pro-

grams. Soon thereafter, OPTN implemented a series of regulations designed to help programs

improve their post-transplant outcomes (McDiarmid et al. 2008). These requirements have re-

mained in place with relatively little modification since. Following a series of high-profile failures

in organ transplantation (Abecassis et al. 2008, Table 1), CMS proposed a set of outcome-based

regulations similar to those used by OPTN in order to identify underperforming programs in 2005.

These regulations took effect beginning on June 30, 2007. An important factor in CMS regulation
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is that CMS has the authority to cease Medicare and Medicaid reimbursement for underperforming

programs. According to SRTR data, in 2018 more than two-thirds of all adult lung transplant pro-

grams received CMS reimbursement for at least 50% of their patients. For these programs, a loss of

CMS reimbursement would likely have profound effects, potentially leading to program insolvency.

In contrast, the penalties imposed by OPTN are perceived to be milder, and are typically focused

on remediation rather than punitive measures(UNOS 2018, Schold 2020)

Due to the severity of the penalties, the CMS regulations have received far more attention in

the medical community than their OPTN counterpart. Widespread criticism from the transplant

community, as well as mounting evidence that the regulations were correlated with a decrease in

transplant volume for some patients, led to the repeal of the CMS regulations, effective November

29, 2019 (see Section 3).

In spite of the recent repeal of the CMS regulations, the study of CMS/OPTN outcome-based

regulations remains relevant for several reasons. First, as noted by Schold (2020), “[t]he effects

of [OPTN] oversight [...] may still yield risk averse behaviors even if the ramifications of low

performance evaluations are not as severe.” Flagging by OPTN requires the program to undergo a

review process, resulting in increased administrative burden, and may also result in negative media

attention, depending on the nature of the failure. Moreover, CMS requires all programs to maintain

OPTN membership in order to received Medicare/Medicaid reimbursement, and this requirement

is unchanged by the repeal enacted in 2019. Under current rules, OPTN has the authority to

rescind the membership of flagged programs (OPTN 2019, Appendix L). Consequently, the current

regulatory configuration still allows for the possibility that a program which is flagged by OPTN

can lose Medicare/Medicaid reimbursement (Andreoni 2020).

Second, the CMS requirements remain an important example of a large-scale pay-for-performance

scheme in the United States. As such schemes proliferate in the United States (see, e.g., CMS

(2020)), it is increasingly important to gain a quantitative understanding of the incentives such

structures create for healthcare providers. Finally, CMS continues to make each program’s post-

transplant survival outcome data available to the public. Hence, programs still have an incentive

to meet certain post-transplant outcome benchmarks, in order to avoid losing patients to other,

higher-performing programs (Howard and Kaplan 2006). For these reasons, we consider both OPTN

and CMS regulations in this paper.

We conclude this section by summarizing the details of each set of regulations. For clarity, in

this section we refer to both OPTN and CMS regulations in the present tense, in spite of the recent
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changes to the CMS requirements. Both CMS and OPTN regulations are based on data published

twice-yearly by the Scientific Registry for Transplant Recipients (SRTR). These data, released in

a document called a Program-Specific Report (PSR), are publicly available on the SRTR website

(www.srtr.org), and contain a large amount of information about each transplant program in

the United States, broken down by organ type. Each PSR incorporates data from all patients

transplanted over a 2.5 year period, called an evaluation window, and is published one year after

the end of the window. A new evaluation window begins every six months; consequently, there are

five “active” evaluation windows at any given time (Figure 1).

Both CMS and OPTN regulations function by considering two numbers reported in each PSR:

the number of observed graft failures (including deaths) during the first year after transplant (de-

noted O) and the number of expected graft failures during the first year after transplant (denoted

E). The expected number of graft failures E is computed by the SRTR using a Cox Proportional

Hazards Model (Cox 1972), which is normalized to national transplant outcomes in order to incen-

tivize better performance by transplant programs nationally. Unfortunately, the Cox models used

by the SRTR have been widely criticized within the transplant community for failing to adequately

capture important medical characteristics (e.g., cardiac risk criteria (Pelletier et al. 2014)) that

surgeons believe may affect survival outcomes (Abecassis et al. 2008, 2009, Howard et al. 2009,

Kasiske et al. 2012). (For a more complete guide to the methods used to create the PSRs, see

Dickinson et al. (2008) and SRTR (2019b).)

For each evaluation window, both OPTN and CMS compare the values O and E reported in

the PSR. Based on these values, OPTN/CMS use specific criteria to decide whether a program

should be subject to additional scrutiny or penalization, a situation known as “being flagged”. The

primary difference between OPTN and CMS regulations is how these values are compared, and the

penalties associated with being flagged.

The OPTN criteria, derived using Bayesian methods (Salkowski et al. 2014a,b), are outlined

in §D11.A of the OPTN bylaws (OPTN 2019). Under these criteria, a program is flagged if ei-

ther FO,E(1.2) < 0.25, or FO,E(2.5) < 0.9 (or both), where FO,E is the cumulative distribu-

tion function of the Gamma distribution with mean and variance equal to (O + 2)/(E + 2) and

(O + 2)/(E + 2)2, respectively. These criteria may be equivalently re-written as O ≤ gOPTN(E)

where gOPTN(x) = min{h1.2(x), h2.5(x)}, and the functions h1.2 and h2.5 are defined implicitly by

the relations FO,E(1.2) = 0.25 and FO,E(2.5) = 0.9, respectively (Kremers 2014).

Until November 2019, a program was flagged under CMS regulations (outlined in 42 CFR
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2.5 years
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Figure 1: Timeline of rolling evaluation windows, used by both CMS and OPTN. Each evaluation
window lasts 2.5 years, and a new window begins every six months. Consequently, at any given time
t, there are five “active” evaluation windows. Put another way, any single transplant contributes
to five different SRTR reports. Note that the PSR for a single evaluation window is published one
year after the conclusion of the evaluation window.

§482.82) if all three of the following occurred: O > E + 3, O > 1.5E, and the one-sided p-value is

less than 0.05, or, equivalently (SRTR 2019b),

f(O) ≡ O

(
1− 1

9 ·O
− 1.96

3
√
O

)3
> E.

More compactly, CMS required O ≤ gCMS(E), where gCMS(x) = max{x + 3, 1.5x, f−1(x)} (see

Figure 2).

3 Literature Review

This work contributes to two different streams of literature. The first is the clinical literature

surrounding the impact of CMS and OPTN outcome-based regulation on transplant programs,

insurers, and patients. The second is the operations research literature related to decision-making

in organ transplantation. Below, we outline each stream and its relation to the present work.

Since their introduction in 2007, the CMS regulations have received significant attention from

the transplant community. Soon after their enactment, many clinicians expressed concerns that

the regulations could restrict access to transplant for patients deemed “high-risk” (Abecassis et al.

2008, 2009, Howard et al. 2009, Weinhandl et al. 2009). Indeed, a survey of 63 transplantation

personnel conducted by Schold et al. (2010) found that respondents from programs flagged by

CMS were significantly more likely to indicate that they had become more restrictive in selecting

both transplant candidates and donors.
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Figure 2: Comparison of OPTN and CMS evaluation criteria in the O/E space. The regulations
divided the non-negative quadrant into three regions: points where a program is flagged under both
criteria (white coloring), under the OPTN criteria only (dark gray coloring) and under neither
criteria (light gray coloring). The boundary between white and light gray is divided into three
regions (indicated by white circles), corresponding to the three criteria enforced by CMS. Similarly,
the boundary between the light and dark gray regions is divided into two regions, corresponding
to the two criteria enforced by OPTN.

As data became available, researchers observed that programs that were flagged under the

CMS criteria exhibited a decline in transplant volume, sometimes as high as 38% (White et al.

2015). However, the cause of this decline has been debated. White et al. (2015) found that flagged

programs reduced the wait-listing of candidates from low-income neighborhoods, which they note “is

likely to be due at least in part to more conservative candidate selection criteria.” The authors also

found that the aggregate risk of one-year post-transplant graft failure is lower among programs that

were never flagged, which “may suggest selection bias on the part of these programs.” Regulators

themselves attributed the decline to “the tendency of [flagged programs] to reduce volume as they

regroup to improve their outcomes” (Hamilton 2013). Schold et al. (2013) do not find that the

observed decline in volume could be attributed to increased risk aversion. Indeed, the authors

question whether the observed “reduction in transplant volume is [...] rational from the [program]

perspective.” Kasiske et al. (2016) note that “[a]voiding suitable but high-risk transplants to avoid

regulatory scrutiny is [...] ineffective, assuming the risk is measured and adjusted for in the models.”

In this work, we address these questions by demonstrating that it may in fact be rational

for programs to reduce their transplant volume in response to outcome-based regulations, even

when the risk adjustment used to assess expected outcomes is adequate. While our findings do
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not definitively demonstrate that the observed decline in volume at flagged programs is due to

increased risk aversion, they do answer the question of whether it can be rational for programs to

reduce volume, and suggest that the observed decline may be at least partially attributable to this

increased risk aversion.

Our work also contributes to a stream of papers which apply the tools of operations research to

problems in organ transplantation. Historically, this literature has fallen into two broad categories:

“organ allocation decisions” and “organ acceptance decisions” (Su and Zenios 2006), which we refer

to as the societal perspective and the patient perspective, respectively. The former category refers to

decisions made from the perspective of the government, regulators, and other national and regional

players in the organ transplantation process (e.g., design of an allocation policy, transportation

networks, and organ procurement regions). Such problems have been addressed using a combination

of both optimization (e.g., Zenios et al. 2000, Segev et al. 2005b, Stahl et al. 2005, Kong et al. 2010,

Akan et al. 2012, Zahiri et al. 2014, Beliën et al. 2013, Davis et al. 2015, Kilambi and Mehrotra

2017) and simulation (e.g., Thompson et al. 2004, Segev et al. 2005a, Davis et al. 2013, Lehr et al.

2019). The latter category, on the other hand, mainly focuses on decisions made by individual

patients (e.g., whether or not to accept a donor organ). This area has primarily employed Markov

decision processes to model problems like optimal acceptance of livers (e.g., Alagoz et al. 2007a,

Sandıkçı et al. 2008), and general models of the organ waitlist from the patient perspective (e.g.,

Alagoz et al. 2007b, Sandıkçı et al. 2013). To our knowledge, this is the first work in the operations

research literature to consider the problem of organ transplantation from the perspective of the

transplant program, i.e., to explicitly consider the choices made by the transplant program itself.

We note that this perspective lies somewhere between the “societal perspective” and the “patient

perspective” discussed above, as programs must balance both the regulatory pressures from society

and the welfare of their patients (Figure 3). However, in this paper we consider programs as “rule

takers,” and study their response under regulatory pressure.

4 Model

In this section, we develop a program-level patient-mix decision model that determines which

patients to add to the waitlist so as to maximize expected transplant volume while keeping the

probability of violating the regulatory criteria (either CMS or OPTN) below a pre-specified risk

threshold. In practice, programs hold periodic meetings to deliberate on which potential transplant
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Societal Perspective

Decisions made by regulators
and other governing bodies,
such as organ allocation,
design of regulations, etc.

Program Perspective

Decisions made by the
program, such as patient

acceptance, waitlist
management, etc.

This paper

Patient Perspective

Decisions made by the
patient, such as organ

acceptance, waitlist addition
and removal, etc.

Figure 3: Relationship between the societal perspective and patient perspective, and the current
work. Ours is among the first works in the operations research literature to consider organ trans-
plantation from the perspective of the program itself, which lies in between societal decisions and
patient decisions.

candidates to add to their waitlists. These meetings typically have many parties present, including

surgeons and physicians, financial coordinators, social workers, psychiatrists, and others. These

decisions are often made with some degree of subjectivity, with little or no quantitative insight.

Our model addresses how a self-interested program may modify this step of the decision process in

order to control their risk of penalization.

Throughout the remainder of the paper, we assume that all graft failures are due to patient

deaths. Recent SRTR data indicate that this assumption holds true in over 90% of lung trans-

plantation cases in the United States (SRTR 2019a,b). For this reason, we refer to the quantity

O as the “observed number of deaths,” and refer generically to patient survival, rather than graft

survival. Table 4 and Table 5 in the appendix summarize our notation.

Under both CMS and OPTN criteria, patients are characterized by their post-transplant survival

probabilities as assessed by both the SRTR risk model and the program’s own experience with the

specific patient subgroup. Let I = {1, . . . , I} denote the set of patient classes based on health

characteristics. With each patient class i ∈ I, we associate two numbers: ci ∈ (0, 1) denoting the

program’s expected one-year post-transplant death probability for patients of type i, and ei ∈ (0, 1)

denoting the SRTR expected one-year post-transplant death probability for patients of type i.

In practice, the values for ci are determined by a program-specific risk model developed based

on the program’s own experience. Such models are common across many types of solid organ

transplantation: some examples include kidneys (Pieloch et al. 2015), hearts (Joyce et al. 2018)

and lungs (Russo et al. 2009, Chan et al. 2019). We assume for simplicity that ci and ei are time

homogeneous, though this assumption may be relaxed. We also assume that ci and ei depend
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only on the patient’s health, not on the quality of the donated graft. Although an exceptionally

low-quality graft may adversely affect transplant outcomes, a large majority of the clinical factors

associated with graft failure in lung transplantation depend mainly on the physiology of the recipient

(Diamond et al. 2013). For example, as of the July 2019 PSRs, 13 of the 16 factors included in the

SRTR risk model for graft survival depend only on the recipient, not the donated organ (SRTR

2019a).

The set of decision epochs is given by T ∪ {0}, where T ≡ {1, . . . , T}, and T ∈ N is some finite

planning horizon. At Houston Methodist, transplant decisions are made on a weekly basis, and

thus for convenience we refer to elements of T as weeks, though this choice can be easily modified.

Let P denote the set of patients who have arrived to the program seeking transplant in the current

week, indexed by t = 0. For each j ∈ P, we introduce the control variable zj ∈ {0, 1}, where zj = 1

if patient j is added to the waitlist and 0 otherwise. Let w = 1, . . . , 5 index the five evaluation

windows active at t = 0 (cf. Figure 1) and w = 6, . . . ,W index the remaining evaluation windows

that begin after t = 0 but end on or before t = T (we assume that T is chosen sufficiently large so

that at least one such window exists). For each window w ∈ W ≡ {1, . . . ,W}, let Tw denote the

set of weeks in T contained in window w.

For each i ∈ I and t ∈ T , let the Z+-valued random variable Zit denote the number of patients

of type i to arrive seeking transplant in week t. For each j = 1, . . . , Zit, let Aj
it be a Bernoulli

random variable indicating whether the jth patient of type i to arrive in week t is added to the

waitlist. The mean of Aj
it is the control variable uit ∈ [0, 1] for all j. The number of patients Yit of

type i added to the waitlist in week t is given by Yit =
∑Zit

j=1A
j
it, where Yit = 0 if Zit = 0.

We make the following assumptions:

Assumption 1. The random variables
{
Aj

it | (i, t) ∈ I×T , j ∈ {1, . . . , Zit}
}
are independent. For

all i ∈ I, t ∈ T , Aj
it ∼ Bernoulli(uit) for all j ∈ {1, . . . , Zit}. That is, the addition of patients to

the waitlist is governed by independent Bernoulli random variables.

Assumption 2. Patients accepted for transplant are immediately matched with a graft.

Assumption 2 is reasonable for lung transplantation, where the median wait time to transplant

is less than 6 months, and more than one third of patients receive a transplant in less than 90 days.

By comparison, only 18% of kidney transplant candidates received a transplant within 6 months

(OPTN 2019). Note that Assumption 2 implies that patient health status is static pre-transplant.

We make the following assumptions regarding patient arrivals Zit:
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Assumption 3. The expected number of patients of type i to arrive is constant across all weeks t.

That is, the expected values λi = E[Zit] for i ∈ I are time-homogeneous.

Assumption 4. The total number of patients to arrive each week is governed by a stationary

Poisson process with mean λ =
∑

i∈I λi. That is,
∑

i∈I Zit ∼ Poisson(λ) for all t ∈ T .

Using the Thinning Theorem for Poisson point processes (see, e.g., Dobrow (2016) Section 6.4),

one can show that under Assumption 4, for each i ∈ I, the random process {Zit}t∈T is a Poisson

point process with mean λi, and that these processes are independent for each i ∈ I.

Assumption 4 is common in the literature; see, e.g., Zenios et al. (2000) or Shechter et al. (2005).

To test this assumption, we performed Pearson’s chi-squared test on all 995 patient arrivals to the

Houston Methodist Hospital lung transplant program between January 2014 and January 2019.

Typically, Houston Methodist does not evaluate transplant candidates (i.e. there are no patient

arrivals) during certain weeks of the year—for example, around the Christmas holidays. When

controlling for these “empty” weeks, the chi-squared test fails to reject the hypothesis of Poisson

arrivals (p = 0.619). Moreover, the same data indicate that the mean number of patient arrivals is

stationary over the period considered. We explore the sensitivity of our model to Assumption 4 in

the appendix.

For each window w ∈ {1, . . . , 5}, let Oinit
w denote the number of patients who were transplanted

in window w who did not reach the one-year post-transplant survival mark, and died before t = 0.

Let the Z+-valued random variable Ôw denote the number of patients who were transplanted in

window w before t = 0 who are still alive at t = 0, but die before the one-year post-transplant

mark. Then, under Assumption 2, the observed number of deaths Ow for any window w ∈ W is

given by

Ow =
∑
t∈Tw

∑
i∈I

Yit∑
j=1

Xj
it +


Oinit

w + Ôw +
∑
j∈P

Xj
0zj , w ∈ {1, . . . , 5},

0, otherwise,

(1)

whereXj
0 ∼ Bernoulli(cj0) indicates whether patient j ∈ P dies within a year of transplant, cj0 ∈ [0, 1]

denotes the program-expected one-year death probability for the patient, and Xj
it ∼ Bernoulli(ci)

indicates whether the jth patient of type i added to the waitlist (and by Assumption 2, transplanted)

in week t fails to reach the one-year post-transplant survival mark.

Similarly, for each w ∈ {1, . . . , 5}, let Einit
w denote the SRTR-expected number of deaths for

patients transplant in window w before t = 0. Then, again using Assumption 2, the SRTR-expected
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number of deaths Ew for patients transplanted in window w ∈ W is given by

Ew =
∑
t∈Tw

∑
i∈I

eiYit +


Einit

w +
∑
j∈P

ej0zj , w ∈ {1, . . . , 5},

0, otherwise,

(2)

where ej0 is the SRTR-expected one-year death probability for patient j ∈ P.

As discussed in Section 1, both OPTN and CMS regulations can be written in the form Ow ≤

g(Ew) for some function g. Hence, for each window w ∈ W, we enforce the constraint P
[
Ow ≤

g(Ew)
]
≥ 1−αw, where αw ∈ [0, 1] is a pre-selected risk parameter for each w ∈ W. We use chance

constraints due to their simple interpretability (which is important to clinicians and healthcare

policy makers), as well as the tractability of the resulting model.

We additionally enforce a variable lower bound on the expected number of transplants performed

in each window w, in order to prevent feasible solutions that require dramatic decreases in transplant

volume. In order to enforce these constraints, let the Z+-valued random variable Nw represent the

number of patients added to the waitlist in window w ∈ W, given by

Nw =
∑
t∈Tw

∑
i∈I

Yit +


N init

w +
∑
j∈P

zj , w ∈ {1, . . . , 5},

0, otherwise,

(3)

where N init
w is the (constant) number of patients added to the waitlist in window w before t = 0.

For each w ∈ W, let Uw be a valid upper bound for E[Nw]. Let Lw ≥ 0 be a parameter selected by

the program, representing the minimum expected number of transplants that a program wishes to

perform to remain open. We enforce the constraint that Lwyw ≤ E
[
Nw

]
≤ Uwyw, where yw ∈ {0, 1}

is a binary variable indicating whether or not a program performs any transplants in window w.

Finally, we specify the objective function of our optimization model. The total number of

patients added to the waitlist in the weeks t ∈ T ∪ {0} is given by
∑

j∈P zi +
∑

(i,t)∈I×T Yit. We

seek to maximize the expected number of patients added to the waitlist, and thus, by Assumption 2,

the number of patients who receive a transplant. Hence, our objective is to maximize

∑
j∈P

zj + E
[∑
t∈T

∑
i∈I

Yit

]
=

∑
j∈P

zj +
∑
t∈T

∑
i∈I

λiuit,

where the last step follows from the definition of Yit and Wald’s lemma (Wald 1944). While other
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choices for the objective function are possible, e.g., maximizing revenue from transplantation or

maximizing quality-adjusted life-years (Akan et al. 2012, Zenios et al. 2000), we focus on the choice

of maximum expected volume for simplicity and note that expected transplant volume is highly

correlated with these other metrics. The resulting chance-constrained optimization model is given

by:

max
∑
j∈P

zj +
∑
t∈T

∑
i∈I

λiuit, (M0-a)

s.t. P
[
Ow ≤ g(Ew)

]
≥ 1− αw for all w ∈ W, (M0-b)

Lwyw ≤ E
[
Nw

]
≤ Uwyw for all w ∈ W, (M0-c)

yw ∈ {0, 1} for all w ∈ W, (M0-d)

zj ∈ {0, 1} for all j ∈ P, (M0-e)

0 ≤ uit ≤ 1 for all (i, t) ∈ I × T , (M0-f)

where Ow and Ew are given by (1) and (2), respectively, and E
[
Nw

]
is given by the linear expression

E
[
Nw

]
=

∑
t∈Tw

∑
i∈I

λiuit +


N init

w +
∑
j∈P

zj , w ∈ {1, . . . , 5},

0, otherwise.

(4)

5 Structural Properties

We now turn our attention to analyzing the solution structure of the model (M0). Throughout this

section we make the very mild assumption that α < 1/2, i.e., no program is willing to tolerate a risk

of being flagged greater than 50%. Our analysis is divided into two parts. Section 5.1 analyzes the

steady-state structure of the model and presents necessary conditions for high-volume transplant

programs to remain open. In Section 5.2, we present and analyze a computationally tractable

approximation to the model (M0), which we use for the numerical experiments in Section 6. All

proofs are available in the appendix. Table 1 provides a summary of the models introduced in this

section.
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5.1 Steady-State Analysis

To simplify our analysis, we replace the function g in (M0-b) with a convex, piecewise linear (PWL)

approximation. The choice of this approximation for both CMS and OPTN criteria is discussed in

the appendix. Additionally, we will take P = ∅ (eliminating the binary variables zj) and Lw = 0

for all w ∈ W (eliminating the binary variables yw). With these modifications, the model (M0)

becomes

max
∑
t∈T

∑
i∈I

λiuit, (M1-a)

s.t. P
[
Ow ≤ max

ℓ∈{1,...,L}
{mℓEw + bℓ}

]
≥ 1− αw for all w ∈ W, (M1-b)

0 ≤ uit ≤ 1 for all (i, t) ∈ I × T , (M1-c)

for some vectors m, b ∈ RL, where the random variables Ow and Ew are given by (1) and (2).

Assumption 3 and Assumption 4 allow us to prove the existence of a stationary solution for a

single-window relaxation of the model (M1):

Proposition 1. Consider the model (M1) for a single evaluation window w satisfying w ≥ 6

(cf. the indexing convention in Section 4). Under Assumption 3 and Assumption 4, there exists a

stationary optimal solution u∗ to (M1) (that is, u∗it1 = u∗it2 for all i ∈ I, t1, t2 ∈ Tw).

Proposition 1 inspires the model

max D
∑
i∈I

λiui, (M2-a)

s.t. P
[
Ow ≤ max

ℓ∈{1,...,L}
{mℓEw + bℓ}

]
≥ 1− α, (M2-b)

0 ≤ ui ≤ 1 for all i ∈ I, (M2-c)

for a single window w ≥ 6, with decision variables u ∈ [0, 1]I . The factor D appearing in the

objective function is the number of decision epochs in an evaluation window (so D = 130 if decisions

are made weekly). The following result shows that the optimal value of (M2) serves as a tight upper

bound on the optimal objective value of the model (M1). We let z∗T (α) denote the optimal objective

value of (M1) with risk parameters α ∈ [0, 1]W and horizon T . Note that z∗T (α) depends on the

initial data {(Einit
w , Oinit

w , Ôw)}5w=1, though we suppress this dependence for brevity.
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Theorem 1. Let ũ be optimal for (M2) with risk parameter α0 ∈ [0, 1]. Suppose that the planning

horizon T is divisible by D, and that window w = 6 begins in week t = 1. Then for any initial data

{(Einit
w , Oinit

w , Ôw)}5w=1 and risk parameters {αw}5w=1,

z∗T (α̃)

T
≤

∑
i∈I

λiũi,

where α̃w = αw for w = 1, . . . , 5 and α̃w = α0 otherwise. Moreover, for any initial data there exist

risk parameters {αw}5w=1 for which this bound holds with equality.

Theorem 1 indicates that the average number of patients accepted to the waitlist per week

(according to (M1)) is bounded above by the model (M2), and that this bound is tight. In fact, we

observe empirically that, as T grows sufficiently large, the slack in the bound of Theorem 1 becomes

arbitrarily small, i.e., the average number of patients added to the waitlist per week converges to∑
i λiũi (see Section 6). This result combined with our empirical observations motivate further

study of the model (M2).

To this end, we consider a model that covers only a single window w ≥ 6 whose decision epochs

(weeks) are indexed by t = 1, . . . , D. We drop subscripts w on the random variables Ow and Ew

for the remainder of the section. Under Assumption 1, Assumption 3 and Assumption 4, the mean

and variance of the random variables O −mℓE − bℓ for ℓ = 1 . . . , L are given by

µℓ = E[O −mℓE − bℓ] =− bℓ +D
∑
i∈I

(ci −mℓei)λiui, (5a)

σ2
ℓ = Var[O −mℓE − bℓ] =D

∑
i∈I

[
(ci −mℓei)

2 + ci(1− ci)
]
λiui, (5b)

respectively. Note that the variance (5b) is linear in the decision variables u. This helpful property

is a consequence of Assumption 4—if the variables Zit followed other distributions, the variance σ2
ℓ

would, in general, be a non-convex function of u.

In order to analyze the quantity P
[
minℓ{O−mℓE−bℓ} ≤ 0

]
which appears implicitly in (M2-b),

we perform two simplifications. First, by the countable additivity of measure

P
[

min
ℓ∈{1,...,L}

{
O −mℓE − bℓ

}
≤ 0

]
≥ max

ℓ∈{1,...,L}

{
P
[
O −mℓE − bℓ ≤ 0

]}
. (6)
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Hence we may approximate the constraint (M2-b) with the constraint

max
ℓ∈{1,...,L}

{
P
[
O −mℓE − bℓ ≤ 0

]}
≥ 1− α. (7)

Second, we make the following assumption:

Assumption 5. The random variables O − mℓE − bℓ for ℓ = 1, . . . , L are normally distributed,

with mean and variance given by (5a) and (5b), respectively.

From the definitions of Ow and Ew ((1) and (2), respectively) for w ≥ 6, we see that the

random variable O − mℓE − bℓ is a sum of D = |Tw| independent, identically distributed (iid)

random variables with finite variance. By the classical central limit theorem, the sum of D iid

random variables with finite variance converges in distribution to a normal random variable as

D → ∞. For all results in this paper we take D = 130, so that O −mℓE − bℓ is the sum of 130 iid

random variables, and is well-approximated by a normal distribution.

Under Assumption 5, we may replace (7) with its deterministic equivalent (Charnes et al. 1958):

min
ℓ∈{1,...,L}

{
µℓ +Φ−1(1− α)σℓ

}
≤ 0, (8)

where Φ(·) is the cumulative distribution function of the standard normal distribution. Replacing

(M2-b) with (8), we obtain the model:

max D
∑
i∈I

λiui, (M3-a)

s.t. min
ℓ∈{1,...,L}

{
µℓ +Φ−1(1− α)σℓ

}
≤ 0, (M3-b)

µℓ = −bℓ +D
∑
i∈I

(ci −mℓei)λiui for ℓ ∈ {1, . . . , L}, (M3-c)

σ2
ℓ = D

∑
i∈I

[
(ci −mℓei)

2 + ci(1− ci)
]
λiui for ℓ ∈ {1, . . . , L}, (M3-d)

0 ≤ ui ≤ 1 for all i ∈ I. (M3-e)

Remark 1. In addition to being non-convex and potentially disconnected (Hillestad and Jacobsen

1980), the feasible region of (M3) has a particularly notable structure: there are situations in which

decreasing transplant volume may increase penalization risk. This counter-intuitive fact is explained

by the quadratic structure of the constraints µℓ +Φ−1(1−α)σℓ ≤ 0. Decreasing u strictly decreases
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σℓ, but may increase µℓ (making it less negative). This may eventually result in the infeasibility

of the model, i.e., unacceptably high risk of penalization. This result has significant implications

for programs: even if a program wishes to attempt to control penalization risk through adverse

patient selection, it is likely that— unless done with extreme care, with accurate data calibration

and forecasting—the program could actually be increasing its penalization risk.

Theorem 2 highlights another important structural feature of (M3):

Theorem 2. There exists an optimal solution u∗ to the normal single-window model (M3) such

that at most one patient class is accepted at a fractional rate, with all other classes either uniformly

accepted or uniformly declined.

Although our models theoretically allow for stochastic acceptance of patients (through the

Bernoulli variables Aj
it), Theorem 2 demonstrates that, at equilibrium, the optimal solution is

almost entirely deterministic—the probability of acceptance for most patients is either 0 or 1.

To conclude this section, we provide necessary conditions on the risk threshold α such that the

optimal transplant volume of a program is non-zero. These conditions provide quantitative insight

about which kinds of patients are the most favorable vis-à-vis CMS and OPTN regulations. Any

future regulations should seek to minimize this bound—that is, future regulations should seek to

minimize the flagging rate a program must accept in order to remain operational. We state the

necessary conditions for high-volume transplant programs under the CMS criteria. Although these

assumptions lead to a slight loss of generality, they cover a very important case, as high-volume

programs naturally account for a majority of transplant volume (as of the July 2019 PSRs, just 10

programs accounted for almost 40% of the lung transplant volume in the US (SRTR 2019a)). We

expect qualitatively similar results for smaller transplant programs and the OPTN criteria. In this

context, we define a high-volume transplant program to be a program for which the most restrictive

CMS constraint is the O ≤ 1.5E constraint (Dickinson et al. 2006, Figure 2). For such programs,

we take L = 1, with bL = 0 and mL = 1.5, to obtain the following model:
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Table 1: Hierarchy of models presented in this section. Each model Mi represents a simplification
of the model M(i− 1), with M0 being the most general.

Contains yw, zj Contains multiple Chance Approximation Structural

Model binaries windows constraint (CC) to function g results

M0 Yes Yes Full CC None

M1 No Yes Full CC PWL Proposition 1

M2 No No Full CC PWL Theorem 1

M3 No No Normal approx PWL Theorem 2

M4 No No Normal approx Linear Theorem 3

max D
∑
i∈I

λiui, (M4-a)

s.t. µ+Φ−1(1− α)σ ≤ 0, (M4-b)

µ = D
∑
i∈I

(ci − 1.5ei)λiui, (M4-c)

σ2 = D
∑
i∈I

[
(ci − 1.5ei)

2 + ci(1− ci)
]
λiui, (M4-d)

0 ≤ ui ≤ 1 for all i ∈ I. (M4-e)

For all i such that ci < 1.5ei, let βi :=
√
ci(1− ci)/(ci − 1.5ei)2 denote the coefficient of variation

of the random variable X − 1.5ei, where X ∼ Bernoulli(ci) indicates whether a patient of class i

survives one year post-transplant. Then the desired necessary conditions, derived via the KKT

conditions, are given as follows:

Theorem 3. If the optimal solution u to (M4) is non-zero, then α ≥ 1−Φ(
√
D

∑
i∈I− λi/(1 + β2

i )),

where I− := {i ∈ I : ci < 1.5ei}.

Theorem 3 indicates that patient classes that are most likely to help a program to remain open

are those for which the ratio ci/ei is favorable (less than 1.5), the expected number of patients λi

is large, and the variance in the probability of death (as measured by βi) is small.

5.2 Tractable Approximation

We now derive a tractable approximation of the model (M0). As in Section 5.1, we begin by

replacing the nonlinear function g in (M0-b) with a convex, PWL approximation of the form
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gPWL(x) = maxℓ=1,...,L{mℓx + bℓ}. Next, following the derivation of (8), we use Assumption 5 to

replace (M0-b) with its deterministic equivalent

min
ℓ∈{1,...,L}

{
µwℓ +Φ−1(1− αw)σwℓ

}
≤ 0 (9)

for each w ∈ W. The values µwℓ and σ2
wℓ are given by the linear expressions

µwℓ = −bℓ+
∑
t∈Tw

∑
i∈I

(ci−mℓei)λiuit+


µ̂w +

(
Oinit

w −mℓE
init
w

)
+

∑
j∈P

(
cj0 −mℓe

j
0

)
zj , w = 1, . . . , 5

0, otherwise,

(10)

and

σ2
wℓ =

∑
t∈Tw

∑
i∈I

[
(ci −mℓei)

2 + ci(1− ci)
]
λiuit +


σ̂2
w +

∑
j∈P

cj0
(
1− cj0

)
zj , w = 1, . . . , 5,

0, otherwise,

(11)

where µ̂w and σ̂2
w are the mean and variance, respectively, of the random variable Ôw which appears

in (1), and cj0 (resp. ej0) is the program’s (resp. SRTR’s) expected probability of death for patient

j ∈ P. We replace the square root function that appears implicitly in (9) with a piecewise linear

approximation. Because the square root function is concave, for any ε > 0 there exists K ∈ N and

scalars β1, . . . , βK , γ1, . . . , γK such that

∣∣√σ2
wℓ − min

k=1,...,K
{βkσ2

wℓ + γk}
∣∣ < ε,

for any σ2
wℓ ∈ [0, U ], where U is a valid upper bound on the quantity (11). Finally, in order to

prevent infeasibility, we introduce a binary variable xw for each window w ∈ W, where xw = 0 if

and only if the chance constraint for window w is satisfied. We then replace the right-hand side of

(9) with Mwxw (where Mw is a sufficiently large constant), and add a term −ρwxw to the objective

function, where ρw > 0 is a penalty term associated with violating the chance constraint in window

w.
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With these modifications, we obtain the following approximation model :

max
∑
j∈P

zj +
∑
t∈T

∑
i∈I

λiuit −
∑
w∈W

ρwxw, (MA-a)

s.t. min
ℓ=1,...,L

{
µwℓ +Φ−1(1− αw)σ̃wℓ

}
≤ Mwxw for all w ∈ W, (MA-b)

σ̃wℓ = min
k=1,...,K

{βkσ2
wℓ + γk} for all w ∈ W and ℓ ∈ {1, . . . , L}, (MA-c)

Lwyw ≤ E
[
Nw

]
≤ Uwyw for all w ∈ W, (MA-d)

xw, yw ∈ {0, 1} for all w ∈ W, (MA-e)

zj ∈ {0, 1} for all j ∈ P, (MA-f)

0 ≤ uit ≤ 1 for all (i, t) ∈ I × T , (MA-g)

where E[Nw], µwl, and σ2
wℓ are given by the linear expressions (4), (10) and (11), respectively.

Because the min{·} expressions appearing in (MA) can be computed by introducing additional

binary variables and linear constraints (see, e.g., Vielma and Nemhauser (2011)), the model (MA)

is a mixed-integer (linear) program, and may be solved with a commerical mixed-integer program-

ming solver. The original model (M0) and the approximation (MA) are related via the following

proposition:

Proposition 2. Suppose that all of the following hold:

1. The piecewise linear approximation of the square root function satisfies σ̃wℓ ≥ σwℓ for all

ℓ ∈ {1, . . . , L} and w ∈ W.

2. The function gPWL is chosen so that gPWL(Ew) ≤ g(Ew) for all Ew ≥ 0.

3. The random variables Ow −mℓEw − bℓ are normally distributed with mean µwℓ and variance

σ2
wℓ for all ℓ ∈ {1, . . . , L} and w ∈ W.

Then any optimal solution to the approximation model (MA) with xw = 0 for all w ∈ W is a

feasible solution to the model (M0).

6 Numerical Experiments

We now perform a series of numerical experiments to illustrate several significant results that follow

from our model. We begin by describing a method for generating the patient classes I which we use

21



in our experiments. All experiments were performed using the Gurobi Optimizer, v9.0.0 (Gurobi

Optimization, LLC 2019).

6.1 Selecting Patient Classes

We generated a set of patient classes I using the data from all patients who were either added to

the lung transplant waitlist or received a lung transplant at Houston Methodist Hospital (HMH)

between January 1, 2014 and December 31, 2018 (multi-organ transplants were excluded). We

emphasize that the technique used in this section is only one possible choice of patient class selection;

other possibilities could be explored in future work. Moreover, the data used to create these patient

classes do not include any patients who sought transplant but were declined to be listed. We discuss

the effect of this missing proprietary data in Section 7.

Of the n = 474 patients in the cohort, 374 underwent transplant, of which we exclude five due to

either unusual medical conditions or data reporting errors. For each of the remaining 469 patients

in the cohort, we computed e, the SRTR-estimated one-year post-transplant death probability,

using the Cox model provided by the SRTR in its July 2019 PSRs, which includes 16 covariates

(SRTR 2019a). Three of the 16 covariates require information about the donor—for the 100 patients

who did not receive transplant, we treated these three covariates as missing values. Similarly, for

each of the 469 patients, we computed c, the program-estimated one-year post-transplant death

probability, using the survival model of Chan et al. (2019). This model uses eight covariates, none

of which require donor information.

Given a pair (e, c) for all 469 patients in the cohort, we created patient classes using a two-

dimensional histogram. We discretized the unit square into square bins of edge length 0.08 (8%)—

we chose this bin size because the program survival model of Chan et al. (2019) has been shown to

discriminate patient classes with survival percentages approximately 8 percentage points apart on

validation data. For each bin, we created one patient class, whose ei and ci values are given by the

average of all the (e, c) pairs of patients contained in the bin. The arrival rate λi was computed

proportional to the number of patients in the bin, scaled so that the total number of arrivals per

evaluation window, 130 ×
∑

i∈I λi, equals 225, the observed number of patient arrivals at HMH

in the the evaluation window covered by the July 2019 PSRs. This method generated 22 patient

classes, illustrated in Figure 4.
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Figure 4: Patient classes created using the technique described in Section 6.1. The light gray grid
partitions the unit square into square bins of width 0.08, and each patient pair (e, c) is indicated
by an open circle. Filled circles indicate the resulting patient classes, with the size of the circle
proportional to the (log of) the arrival rate λi. This figure crops outlying data points for visual
clarity (complete plot shown in the electronic companion).

6.2 Program Response Prior to Flagging

We next explore how our model reacts to changes in the program’s position relative to regulatory

expectations. Our primary question is whether a program which is currently performing below

regulatory expectations is incentivized to (temporarily) reduce its transplant volume in order to

reach compliance.

To test this question, we solve the approximation model (MA) for various values of the starting

parameters for each of the five active windows w = 1, . . . , 5: Einit
w (the current expected number

of deaths), µ̂w + Oinit
w (the current expected value of the observed number of deaths) and σ̂2

w (the

current variance of the observed number of deaths). We assume that at the current week t = 0

there are three patients under consideration with (e, c) values given by (10%, 9%), (8%, 12%) and

(8%, 15%). We fix the parameters αw = 3%, ρw = 103 and Lw = 0 for all windows w and choose

T such that the model encompasses 15 complete evaluation windows.

The values Einit
w , Oinit

w , µ̂w and σ̂2
w were calculated from the actual situation of Houston

Methodist during three weeks in 2016. The data for these three weeks are shown in Table 2.

The values of Einit
w were computed using the SRTR survival model for the July 2019 PSRs. At the

time listing decisions are made, the precise coefficients used by the SRTR are not known precisely,

and thus the choice of the July 2019 PSR can be viewed as the program estimating the SRTR
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Table 2: Starting position of Houston Methodist during three weeks in the second half of 2016. The
“Exp.” column reports the value Einit

w , and the “Obs.” column reports the value Oinit
w + µ̂w ± σ̂w.

w = 1 w = 2 w = 3 w = 4 w = 5

Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs.

Jul. 18 17.0 20.9± 1.6 12.1 13.9± 1.6 8.1 10.9± 1.6 3.7 4.2± 1.4 0.1 0.1± 0.2

Sep. 26 18.1 20.9± 1.6 13.2 13.9± 1.6 9.3 10.9± 1.6 4.8 4.7± 1.5 1.2 1.2± 1.0

Dec. 19 19.1 20.5± 1.5 14.3 13.5± 1.5 10.3 10.5± 1.5 5.8 4.5± 1.5 2.3 1.6± 1.2

survival model in advance. The values Oinit
w were computed using SRTR data, and the remaining

values (µ̂w and σ̂2
w) were computed using the survival model of Chan et al. (2019), with a synthetic

baseline hazard curve.

The results are illustrated in Figure 5. We note that the solutions satisfy the chance constraints

for all windows. Moreover, the optimal solution to (MA) converges to the same steady state for all

sets of initial conditions (cf. Theorem 1 and the ensuing discussion). These results demonstrate that

if a program has experienced fewer deaths to date than the number expected by regulators, a self-

interested program may be able to increase the number of transplants it performs, taking advantage

of its favorable position. Conversely, if a program has a higher number of observed deaths than

expected, a program may become more conservative, until its position has stabilized. This experi-

ment shows that, under realistic circumstances, it may make sense for a self-interested transplant

program to (temporarily) reduce its transplant volume in order to manage risk of penalization.

6.3 Program Response After Flagging

We now consider the response of a program after it receives a flag. Empirical studies in the med-

ical literature indicate that flagged transplant programs see a corresponding decline in transplant

volume (see, e.g., Schold et al. (2013)). However, the cause of this decline is not well understood.

Because post-transplant outcomes and flagging information are publicly available, one hypothesis

for the decline in transplant volume is that patients avoid low-performing programs, driving down

transplant volume at such programs (Howard and Kaplan 2006).

Under the hypothesis that the decline in transplant volume after a flag is due to patient choice,

we use our model to characterize the response of a transplant program to these changing conditions.

To perform this test, we solve the model (MA) for a single window w satisfying w ≥ 6, using the
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Figure 5: Results of the numerical experiment in Section 6.2. Regardless of the initial conditions,
the program converges to the same steady-state solution (cf. Theorem 1). However, if a program
finds itself in a favorable initial position, our model adjusts to perform more transplants before
reaching steady-state than a program in an unfavorable position. The behavior is qualitatively
similar for both CMS criteria (left panel) and OPTN criteria (right panel).

patient classes derived in Section 6.1. In order to model the decrease in volume due to patient

choice, we uniformly scale all patient arrival rates λi by a scale factor β ∈ (0, 1). That is, we

assume that all patient types uniformly defect to other programs. We fix the parameters αw = 3%,

ρw = 103 and Lw = 0.

The results, shown in Figure 6, offer two insights. The first is that the decline in volume following

a program flag may be driven by two factors. When a program’s volume of incoming patients

declines—nominally due to patients choosing to receive care at higher-performing programs—the

fraction of patients the program can accept while maintaining a constant level of risk declines as well.

Using the example in Figure 6, consider a program where, initially, an average of 2.0 patients arrive

per week seeking transplant, with an average of 85.0% being accepted under CMS regulations. This

yields an average of 1.70 transplants performed per week. Suppose that the program then receives

a flag, and sees a corresponding decline of 25% in the number of patients arriving, uniformly across

all patient classes i ∈ I—i.e., the program now has an average of 1.50 patients arrive each week

seeking transplant. According to our model of program behavior, the program will now accept only

81.6% of the arriving patients, leading to only 1.22 transplants being performed per week. This

amounts to an additional 4% decline in transplant volume on top of the loss of patients to other

programs. These results suggest that the observed decline in transplant volume after penalization

could be caused simultaneously by patient choice and the rational reaction of programs to the
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Figure 6: Results of the numerical experiment in Section 6.3. The non-monotonicity of the curves
is due to the different regulatory criteria for smaller programs compared to medium and large
programs. Note that medium programs in particular must curtail their waitlist acceptance fraction
compared to other programs in order to maintain the same risk of flagging (α = 3% for this figure).

corresponding decline in volume.

The second takeaway from this experiment is an unintended consequence of CMS/OPTN style

regulation which, to our knowledge, has not been discussed in the literature. Namely, Figure 6

demonstrates that programs of different sizes but otherwise identical patient mixes are not penalized

equally under these regulations. Specifically, medium-sized programs may be forced to accept

relatively fewer patients than small- or large-sized programs in order to maintain the same level of

penalization risk. This finding can be explained as follows: large programs are protected by the

law of large numbers—that is, their variance in outcomes is lower due to larger sample sizes. On

the other hand, small programs also have small variance in outcomes (e.g. variance in the number

of deaths goes to zero as the number of transplants performed goes to zero). Medium programs,

however, have the largest variance in outcomes, and thus may have a stronger incentive to engage

in adverse selection in order to control penalization risk. This finding highlights an important area

for improvement in future regulation, in order to ensure that programs with similar performance

but varying sizes are regulated evenly.

6.4 What if the Risk Adjustment is Accurate?

To conclude our experiments, we consider the behavior of programs when the risk adjustment used

to compute expected outcomes is accurate. That is, if a program’s estimated death probabilities
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(ci) match those of regulators (ei), is it always optimal for that program to accept all arriving

patients to the waitlist? Ideally such programs, which are meeting regulatory expectations, should

be able to accept a large majority—if not all—arriving patients.

To test this hypothesis, we generated three synthetic but reasonable transplant programs (small,

medium and large) which satisfy ei = ci for all patient classes i ∈ I (Table 3). We then solved the

approximation model (MA) for a single window w ≥ 6 for varying values of the risk parameter α,

and recorded the resulting optimal fraction of patients accepted to the waitlist.

Figure 7 shows that there exist programs of realistic scale satisfying ci = ei for all patients,

for which 100% acceptance is not optimal at reasonable risk thresholds α (Figure 7). For all three

programs we constructed, we see that 100% acceptance is optimal for α larger than approximately

4%. For any smaller risk values α, the optimal transplant volume drops almost immediately by

approximately 20%, before decreasing steadily.

The CMS criteria exhibit similar behavior, with a threshold of approximately 2%. In fact, while

the CMS criteria were in effect, there was significant debate in the literature over changing the value

of the 1.5 parameter used in the CMS criteria (Hamilton 2016, Kasiske et al. 2016, Wright 2016).

To test the effect of such changes, we repeat the previous experiment for the synthetic medium

program using the CMS criteria, while varying the value of the 1.5 parameter. Results in Figure 8

indicate that raising the slope parameter to approximately 2 may alleviate the burden on transplant

programs.

These results indicate that even when the risk adjustment used to compute expected outcomes

is accurate, there may still exist rational programs who reject patients in order to keep their flagging

risk within pre-specified bounds. Moreover, we also find that adjustments to the parameters used

in the regulations (such as those discussed by Kasiske et al. (2016)) could lead to significant gains

in transplant volume for some programs. We note that our model is able to quantify the precise and

relatively severe effect that this regulatory risk aversion may have on waitlist (and thus transplant)

volume.

6.5 Discussion

Collectively, our results demonstrate that it may make sense, under realistic circumstances, for

a self-interested program to reject patients in order to avoid penalization under CMS/OPTN-like

outcome-based regulations. This finding answers the question of Schold et al. (2013), who ask

whether it can ever be rational for a program to decrease its transplant volume in response to
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Table 3: Arrival rates for three synthetic programs used in Section 6.4. Blank entries are assumed
to be zero. The small program has 8 patient classes, the medium program has 10 patient classes,
and the large program has 12 patient classes. The “Total” column is given in units of arrivals per
week.

ei = ci (%)

Program 2 4 6 8 10 12 14 16 18 20 22 24 Total

Small .229 .030 .030 .030 .030 .030 .030 .030 0.439

Medium .298 .188 .020 .020 .020 .020 .020 .020 .020 .020 0.646

Large .765 .700 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 1.565

flagging. It also supports the findings of White et al. (2015), who observe that the decline in the

volume at flagged programs could be at least partially attributable to increased risk aversion.

The implications of this result are significant to policymakers. Most notably, we have demon-

strated that the regulations create incentives for programs to engage in adverse selection of patients

in order to control penalization risk. Although we do not explicitly consider program selection of

candidate organs, our findings suggest that programs likely have incentives to adversely select or-

gans as well as candidates—a result further supported by works cited above, which indicate that

programs engage in adverse selection of both organs and candidates. Collectively, these findings

imply that the regulations could exacerabte the already severe supply-demand mismatch of organs

by incentivizing programs to reject medically-suitable organs and recipients for transplant.

We now discuss the relationship between our results and the risk adjustment used by the SRTR

to compute the expected number of graft failures. It is understood in the clinical literature that

the methods used by SRTR for risk adjustment do not adequately capture all factors relevant to

patient and graft survival. There are three potential lenses to interpret our results:

1. The first case, most prominently discussed in the clinical literature, is that the SRTR risk ad-

justment is not adequate. Under this hypothesis, our findings suggest that rational programs

may reject patients in order to overcome inaccuracies in the risk adjustment models.

2. The second case is that the SRTR risk adjustment is adequate, and ci = ei for all patient

classes i. In this situation, the results of Section 6.4 demonstrate that a rational program

may still be incentivized to engage in adverse patient selection, if their risk tolerance is not

sufficiently large. This finding suggests that even perfect risk adjustment may not eliminate

the unintended consequences of the regulations.

3. Finally, there is the possibility that the risk adjustment is adequate, but ci ̸= ei for some
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patient classes i. That is, it is possible that the risk adjustment ei truly reflects national

average outcomes for patients of class i, but that a particular program performs better or

worse than the national average for some patient classes. In particular, ci > ei implies that a

program is truly underperforming for class i patients. Our results then indicate that a program

may decline to transplant patients when those patients may receive better care (i.e. higher

one-year post transplant survival) at other programs. This interpretation is plausibly in

keeping with the spirit of the CMS regulations, which aimed to route patients towards higher-

performing transplant programs. We note that this argument makes the large assumption

that a patient will have the resources to select and travel to another program.

7 Conclusion

We have presented the first modeling framework to consider the problem of regulatory-induced

risk aversion from the perspective of a transplant program. Using data provided by the SRTR

and Houston Methodist Hospital, we highlighted several important clinical insights for transplant

programs, as well as several shortcomings of the regulatory system currently in place in the United

States. Notably, we demonstrated realistic conditions under which it may be rational for a program

to accept fewer patients in order to remain in compliance with both OPTN and CMS regulations.

Moreover, we illustrated that medium-sized transplant programs may need to decrease their volume

more than larger or smaller programs with otherwise identical patient mixes.

Due to the significant implications of our work to patient care, we discuss some limitations of

this study. We also suggest several extensions of our model as future work.

First, this paper does not explore the impact of outcome-based regulations on waitlist dynamics.

Given the critical role of the transplant waitlist in the United States—particularly for organs other

than lungs—any regulatory decisions should consider the impact of organ availability and waiting

times. Furthermore, our results assume that programs are able to accurately predict post-transplant

graft failure probabilities. While some predictive models have been developed for this task, no model

is perfect, and it may be important to consider the effects of error and stochasticity in the model

parameters we use.

Another limitation of our study is that the data used in our numerical experiments only included

patients who were accepted for listing at Houston Methodist, not those who were declined. The

effect that this lack of data may have on the final results is difficult to forecast. However, discussions
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with surgeons and other decision makers indicate that patients who were not chosen for listing were

generally those with the highest risk (roughly, the highest ci values). Consequently, the results

presented in this paper may be interpreted loosely as a “best case scenario,” with relatively low-

risk patients, but future study with (proprietary) data is warranted. Finally, we also note that the

structure of our results depends on the method used to encode patient data (i.e. discrete patient

classes characterized by (λi, ei, ci) triples). Future work could explore other possible encodings.

An additional extension beyond the scope of the present work is to empirically explore the

methods used by programs when making waitlisting decisions. In particular, it is unclear whether

program behavior can truly be classified as “rational,” and which factors play the largest role

in waitlisting decisions. A better understanding of this process among policymakers would help

augment the results of models such as ours when designing regulations.

Other future work could extend the proposed model to include other organs, such as livers

and kidneys. Because these organs have higher variance in graft quality as well as dramatically

different waitlist dynamics, any model that incorporates them would likely need to relax some of our

modeling assumptions. In addition to requiring the modeling of waitlist dynamics, these extensions

would require additional modeling of the organ allocation process, which has been widely studied

in the operations research literature. These extensions represent a promising direction for future

work.
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Appendix A Summary of Notation

Notation is summarized in Table 4 through Table 7.

Table 4: Summary of notation—sets.

Sets

I Set of patient classes, with I = |I|
T Set of decision epochs, with T = |T | − 1

W Set of evaluation windows, with W = |W|
Tw Set of decision epochs in window w ∈ W
P Set of patients arriving and seeking transplant in week 0

Appendix B Proofs of Formal Results

B.1 Proof of Proposition 1

Proof. Proof of Proposition 1. Let Rℓ(u) := O−mℓE− bℓ. Let u
∗ ∈ [0, 1]I×D be optimal for (M1).

For each ℓ, Assumption 4 allows us to compute the characteristic function φℓ( · ;u∗) of Rℓ(u∗),

given by

φℓ(s;u
∗) = exp

[
− ιβs+

∑
i∈I

ξiℓ(s)
D∑
t=1

u∗it

]
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Table 5: Summary of notation—parameters.

Parameters

ci, ei Program- and SRTR-expected one-year post-transplant death probability for pa-
tients of class i ∈ I

λi Arrival rate of patient of type i ∈ I
cj0, e

j
0 Program- and SRTR-expected death probability for patient j ∈ P

αw Risk threshold for window w ∈ W
D Number of decision epochs per evaluation window

Lw, Uw Lower and upper bound on the expected number of transplants in window w ∈ W
ρw Penalty for violating the chance constraint in window w ∈ W
Mw Big-M value for the chance constraint in window w ∈ W
N init

w Constant number of patients added to the waitlist in window w ∈ W before t = 0

Oinit
w Constant number of patient transplanted in window w ∈ W who did not reach the

one-year post transplant survival mark, and died before t = 0

Einit
w SRTR-expected number of deaths from patients transplanted in window w ∈ W

before t = 0

f(·) CMS p-value criteria function

g(·) Nonlinear function generically representing both CMS and OPTN regulations

L Number of piecewise linear segments used to approximate the function g

K Number of piecewise linear segments used to approximate the square root function
in (MA)

mℓ, bℓ Slope and y-intercept of segment ℓ ∈ {1, . . . , L} used to approximate g

βk, γk Slope and y-intercept of segment k ∈ {1, . . . ,K} used to approximate the square
root function

µ̂w, σ̂
2
w Expectation and variance of the random variable Ôw (see Table 7) for window w ∈ W

Table 6: Summary of notation—decision variables.

Decision Variables

zj Binary variable indicating whether or not patient j ∈ P is added to the waitlist

uit Probability that a patient of type i ∈ I is added to the waitlist in week t ∈ T
yw Binary variable indicating whether program performs transplants in window w ∈ W
xw Binary variable indicating whether the chance constraint is satisfied in window w ∈

W
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Table 7: Summary of notation—random variables.

Random Variables

Aj
it Bernoulli random variable indicating whether the jth patient of type i ∈ I arriving

in week t ∈ T is added to the waitlist

Xj
it Bernoulli random variable indicating whether the jth patient of type i ∈ I added to

the waitlist in week t ∈ T fails to survive one year after transplantation

Yit Number of patients of type i ∈ I added to the waitlist in week t ∈ T
Zit Number of patients of type i ∈ I arriving in week t ∈ T added to the waitlist

Nw Number of patients added to the waitlist in window w ∈ W
Ow Observed number of deaths for patients transplanted in window w ∈ W
Ew SRTR-expected number of deaths for patients transplanted in window w ∈ W
Ôw Number of patients transplanted in window w ∈ W before t = 0 who are still alive

at t = 0, but die before reaching the one-year post-transplant mark

Xj
0 Bernoulli random variable indicating whether patient j ∈ P fails to survive for one

year post-transplant

where

ξiℓ(s) = λi

[
(1− ci) exp

(
− ιmℓeis

)
+ ci exp

(
ι(1−mℓei)s

)
− 1

]
for i ∈ I, and ι is the imaginary unit. From the form of φℓ(s;u

∗), we can immediately verify that

φℓ(s;u
∗) = φℓ(s;u), where u ∈ [0, 1]H×D is given by uik = 1

D

∑D
t=1 u

∗
it for all i ∈ I, k ∈ {1, . . . , D}.

This implies that Rℓ(u∗) and Rℓ(u) follow the same distribution for ℓ ∈ {1, . . . , L}. Hence

P
[

min
ℓ∈{1,...,L}

{
Rℓ(u)

}
≤ 0

]
= P

[
min

ℓ∈{1,...,L}

{
Rℓ(u∗)

}
≤ 0

]
≥ 1− α,

so u is feasible (checking the bounds 0 ≤ uit ≤ 1 is trivial). Because E[Zit] is assumed time

homogeneous, direct calculation shows that both u∗ and u produce the same objective value, and

thus u is optimal.

B.2 Proof of Theorem 1

Proof. Proof of Theorem 1. We consider the optimal solutions of three different models. Let

u∗ ∈ [0, 1]I×T denote the optimal solution to (M1) for full window set W = {1, . . . ,W}. Let

û ∈ [0, 1]I×T denote the optimal solution to (M1) for only a single window ŵ ≥ 6 and risk parameter
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α0. Finally, let ũ ∈ [0, 1]I denote the optimal solution to (M2) with risk parameter α0. Then

∑
t∈Tŵ

∑
i∈I

λiu
∗
it ≤

∑
t∈Tŵ

∑
i∈I

λiûit = D
∑
i∈I

λiũi, (12)

where the inequality follows because {u∗it}i∈I,t∈Tŵ is feasible for the same model for which û is

optimal, and the equality follows from Proposition 1. Next, because T is evenly divisible by D and

window w = 6 begins in week t = 1, there exists a set of windows Ŵ ⊂ W such that w ≥ 6 for

all w ∈ Ŵ, |Ŵ| = T/D, and {Tw}w∈Ŵ partitions T (i.e.,
⋃

w∈Ŵ Tw = T and Tw1 ∩ Tw2 = ∅ for all

w1 ̸= w2 ∈ Ŵ). Consequently, we have that

z∗T (α) =
∑
t∈T

∑
i∈I

λiu
∗
it =

∑
w∈Ŵ

∑
t∈Tw

∑
i∈I

λiu
∗
it ≤ D

∑
w∈Ŵ

∑
i∈I

λiũi = T
∑
i∈I

λiũi,

where the inequality follows from (12). The result follows from dividing through by T .

To see that this bound is tight, take αw = 1 for w = 1, . . . , 5. Then the solution uit = ũi for all

i ∈ I, t ∈ T is feasible for (M1), and satisfies (12) with equality.

B.3 Proof of Theorem 2

The proof of Theorem 2 follows directly from the following lemma:

Lemma 1 (Hillestad and Jacobsen (1980)). Given A ∈ Rm×n, c ∈ Rn, b ∈ Rm and continuous,

strictly concave g : Rn → R, if the optimization problem max{cTx | Ax ≤ b, g(x) ≤ 0} has an

optimal solution, then it has an optimal solution which lies on an edge of FA = {x ∈ Rn | Ax ≤ b}.

Proof. Proof of Theorem 2. Because u ≡ 0 is feasible for (M3), there exists an optimal solution for

the same. The result then follows directly from Lemma 1 where the function g given by (M3-b) is

strictly concave as the minimum of strictly concave functions.

B.4 Proof of Theorem 3

To prove Theorem 3, we derive a convex relaxation of the model (M4), then use the KKT conditions

to obtain our final result. By replacing the values ui in (M4-d) with u2i , the concave term Φ−1(1−

α)
√
σ2 becomes convex, yielding the model:

max DλTu (13a)
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s.t. F(u) = ηTu+ φ∥N1/2u∥2 ≤ 0 (13b)

0 ≤ ui ≤ 1 for i ∈ I (13c)

where the vector η ∈ RI is given by ηi = Dλi(ci − mLei), the matrix N ∈ RI×I is given by

N = diag(ν) for νi = Dλi

[
(ci − 1.5ei)

2 + ci(1− ci)
]
> 0, and φ ≡ Φ−1(1− α).

Proposition 3. Suppose φ > 0 (that is, α < 1/2). Then the model (13) is convex. Furthermore,

the feasible region of (13) is a relaxation of the feasible region of (M4).

Proof. Proof. To see that (13) is convex, note that if φ > 0, then model (13) is a second-order

conic program, and hence convex. To see that (13) is a relaxation of (M4), note simply that

∥N1/2u∥2 = (
∑

i∈I νiu
2
i )

1/2 ≤ (
∑

i∈I νiui)
1/2 for ui ∈ [0, 1]. The result follows immediately.

Beacuse the model (13) is convex, the KKT conditions are sufficient for optimality. That is,

if there exists a solution u to (13), multipliers µ ∈ R, σ+, σ− ∈ RI and a vector z ∈ ∂F(u) (the

subdifferential of F at u) such that

Dλi = µzi + σ+
i − σ−

i for all i ∈ I (Stationarity) (14a)

µF(u) = 0 (Complementary Slackness #1) (14b)

σ+
i (ui − 1) = 0 for all i ∈ I (Complementary Slackness #2) (14c)

σ−
i ui = 0 for all i ∈ I (Complementary Slackness #3) (14d)

u ∈ [0, 1]I and F(u) ≤ 0 (Primal Feasibility) (14e)

µ ≥ 0, σ+
i ≥ 0, σ−

i ≥ 0 for all i ∈ I (Dual Feasibility) (14f)

then u is optimal for (13). We note that for u ̸= 0, ∂F(u) is simply the gradient of F , and

∂F(0) = {η + φz | ∥N−1/2z∥ ≤ 1}. The following lemma is a statement of the KKT conditions

(14) for (13) at u ≡ 0:

Lemma 2. Suppose there exists a scalar µ ≥ 0, vector σ ∈ RI
+ and a vector z ∈ ∂F(0) (the

subdifferential of F at 0) such that Dλi = µzi − σi for all i ∈ I. Then u ≡ 0 is optimal for (M4).

Proof. Proof. Suppose such a µ, σ and z exist. Then u ≡ 0, µ, σ satisfy the KKT conditions (14)

for (13).Because the model (13) is convex, the KKT conditions are sufficient, and thus u ≡ 0 is

optimal for (13). By Proposition 3, u ≡ 0 must also be optimal for (M4).
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Proof. Proof (of Theorem 3). We prove the contrapositive. Suppose that

√√√√D
∑
i∈I−

λi
(ci − 1.5ei)2

(ci − 1.5ei)2 + ci(1− ci)
< Φ−1(1− α).

This may be expressed in more compact notation as ∥N−1/2ŷ∥2 < 1, where ŷ = −min{η, 0}/φ,

and the min{·} is taken component-wise. We have that η + φŷ = η −min{η, 0} = max{η, 0} ≥ 0,

and hence, there exists a sufficiently small perturbation vector ε ∈ RI such that η + φỹ > 0 and

∥N−1/2ỹ∥2 ≤ 1 for ỹ = ŷ + ε (note in particular that η + φỹ ∈ ∂F(0)). Next, define

µ ≡ max
i∈I

{
Dλi

ηi + φỹi

}
,

and, for all i ∈ I, σi ≡ µ(ηi + φỹi) −Dλi. By construction, σ ∈ RI
+, µ ≥ 0, η + φỹ ∈ ∂F(0), and

Dλ+ σ = µ(η+ φỹ). By Lemma 2, u∗ ≡ 0 is optimal for (13). By Proposition 3, it is also optimal

for (M4), as was to be shown.

B.5 Proof of Proposition 2

Proof. Proof of Proposition 2. Let (z∗, u∗, y∗, x∗) be an optimal solution to (MA), with x∗w = 0 for

all w ∈ W. It suffices to show that (z∗, u∗) satisfy the constraints (M0-b) for all w ∈ W. We have

that, for any w ∈ W,

min
ℓ∈{1,...,L}

{
µwℓ +Φ−1(1− α)σ̃wℓ

}
≤ 0

=⇒ min
ℓ∈{1,...,L}

{
µwℓ +Φ−1(1− α)σwℓ

}
≤ 0 (By condition 1)

=⇒ max
ℓ∈{1,...,L}

P
[
Ow −mℓEw − bℓ ≤ 0

]
≥ 1− αw (By condition 3)

=⇒ P
[

min
ℓ∈{1,...,L}

{
Ow −mℓEw − bℓ

}
≤ 0

]
≥ 1− αw (By (6))

=⇒ P
[
Ow ≤ max

ℓ∈{1,...,L}

{
mℓEw + bℓ

}]
≥ 1− αw

=⇒ P
[
Ow ≤ g(Ew)

]
≥ 1− αw (By condition 2),

completing the proof.
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Appendix C Additional Results

We now demonstrate that, in the limit α → 0, the optimal objective value of (M3) goes to zero.

This result is illustrated in Figure 10.

Proposition 4. Let z∗(α) denote the optimal objective value of (M3) as a function of α ∈ (0, 1).

Suppose that bℓ ≥ 0 for all ℓ = 1, . . . , L. Then limα↓0 z
∗(α) = 0.

Althought the assumption bℓ ≥ 0 for all ℓ in Proposition 4 can be relaxed slightly, we note that

the choices of bℓ in Section 6 satisfy this condition as stated, and thus we leave it for simplicity.

For clarity, we introduce the notation riℓ ≡ ci − mℓei and siℓ ≡ r2iℓ + ci(1 − ci) for all i ∈ I and

ℓ ∈ {1, . . . , L}.

Proof. Proof (of Proposition 4). Let α∗ ∈ (0, 1) satisfy

Φ−1(1− α∗)
√
ŝ+min{r̂, 0}

√
D

∑
i∈I

λi = 0.

where r̂ = mini,ℓ{riℓ} and ŝ = mini,ℓ{siℓ}. Then, because ŝ > 0, we have that

Φ−1(1− α)
√
ŝ+min{r̂, 0}

√
D

∑
i∈I

λi > 0, (15)

for all α ∈ (0, α∗). Fix such an α, and let uα be the corresponding optimal solution to (M3). If uα

is the zero vector, then z∗(α) = 0. Otherwise, because uα is feasible, we have that

0 ≥ min
ℓ

{
− bℓ +

∑
i∈I

ril(Dλiu
α
i ) + Φ−1(1− α)

√∑
i∈I

siℓ(Dλiuαi )

}

≥ min
ℓ
{−bℓ}+min

ℓ

{∑
i∈I

riℓ(Dλiu
α
i )

}
+min

ℓ

{
Φ−1(1− α)

√∑
i∈I

siℓ(Dλiuαi )

}

= min
ℓ
{−bℓ}+min

ℓ

{∑
i∈I

riℓ(Dλiu
α
i )

}
+Φ−1(1− α)

√
min
ℓ

{∑
i∈I

siℓ(Dλiuαi )

}

≥ min
ℓ
{−bℓ}+min

ℓ

{
min
i
{riℓ}

∑
i∈I

(Dλiu
α
i )

}
+Φ−1(1− α)

√
min
ℓ

{
min
i
{siℓ}

∑
i∈I

(Dλiuαi )

}
= min

ℓ
{−bℓ}+ r̂

∑
i∈I

Dλiu
α
i +Φ−1(1− α)

√
ŝ
∑
i∈I

Dλiuαi

= min
ℓ
{−bℓ}+ r̂z∗(α) + Φ−1(1− α)

√
ŝz∗(α).
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Re-arranging this expression gives that

Φ−1(1− α)
√
ŝ ≤ −minℓ{−bℓ}√

z∗(α)
− r̂

√
z∗(α) ≤ −minℓ{−bℓ}√

z∗(α)
−min{r̂, 0}

√∑
i∈I

Dλi.

Re-arranging, using the condition (15) and the fact that bℓ ≥ 0 for all ℓ gives

z∗(α) ≤ −minℓ{−bℓ}
Φ−1(1− α)

√
ŝ+min{r̂, 0}

√∑
iDλi

. (16)

Because the relation (16) holds for all α ∈ (0, α∗), and z∗(α) ≥ 0 for all α ∈ (0, 1), we have that

0 ≤ lim
α↓0

z∗(α) ≤ lim
α↓0

−minℓ{−bℓ}
Φ−1(1− α)

√
ŝ+min{r̂, 0}

√∑
iDλi

= 0,

as was to be shown.

Appendix D Convex PWL Approximation to OPTN and CMS

Criteria

The models presented throughout this paper require a convex piecewise linear approximation of

the criteria function gCMS and gOPTN. Recall that gCMS(x) = max{x+ 3, 1.5x, f−1(x)} where the

function f is given by

f(O) ≡ O

(
1− 1

9 ·O
− 1.96

3
√
O

)3
.

To obtain a piecewise linear approximation, we replace the nonlinear segment f−1 with a linear

interpolation between the two circled points in Figure 2 (i.e., between the intersection of the curve

f−1(x) and the line x + 3, and the intersection of the curve f−1(x) and the line 1.5x). The

resulting approximation to gCMS is ĝCMS(x) = max{x+ 3, 1.364x+ 2.579, 1.5x} (cf. condition 2 of

Proposition 2).

To approximate to the function gOPTN, we use a line of best fit, resulting in the approximation

ĝOPTN(x) = 1.298x+ 2.265. Note that this approximation is affine, and does not satisfy condition

2 of Proposition 2 for all x ≥ 0. Nevertheless, we will see in Section E.2 that the resulting

approximation is still conservative in practice.
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Figure 9: Patient classes created using the technique described in Section 6.1. The light gray grid
partitions the unit square into square bins of width 0.08, and each patient pair (e, c) is indicated
by an open circle. Filled circles indicate the resulting patient classes, with the size of the circle
proportional to the (log of) the arrival rate λi.

Appendix E Sensitivity Analysis

E.1 Risk Parameter Selection

We explore the sensitivity of optimal program behavior to the choice of risk parameter αw. Using

the patient classes from Section 6.1, we solve the model (MA) for a single window w ≥ 6, with

Lw = 0, ρw = 103 and varying values of αw. As proven in Proposition 4, the optimal fraction

of accepted patients goes to zero as αw → 0, consistent with intuition. We see in Figure 10 that

this decline happens largely for αw ≤ 2%. This result suggests that a transplant program can only

reasonably control its risk of false flagging up to approximately 2%, at which point it must cut

transplant volume drastically. Potential modifications to OPTN/CMS-style regulation could focus

on decreasing this number for transplant programs.

E.2 Poisson Arrivals

We assess the sensitivity of our model to the Poisson arrivals assumption (Assumption 4). As

a byproduct of this analysis, we also demonstrate the effect of using piecewise linear approxima-

tions for the true penalization curves g (Figure 2). We begin by randomly perturbing a Poisson

distribution (described in detail below). We next solve the model (MA) using the unperturbed

Poisson distribution to obtain an optimal acceptance policy u∗, and use the perturbed distribution
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Figure 10: Sensitivity of optimal acceptance fraction to risk parameter selection. As proven in the
appendix, the optimal fraction of accepted patients goes to zero as αw ↓ 0. We observe that, for
the patient classes in Figure 9, the fraction of patients accepted to the waitlist at optimality is
relatively level until approximately α = 1%, at which point it begins to drop significantly.

and u∗ to generate n = 50, 000 pairs (E,O) of expected and observed deaths using the statistical

model introduced in Section 4 (excluding Assumption 4). We then record the fraction of the 50, 000

sample windows which resulted in a flag under both the true criteria function g and the piecewise

linear criteria function gPWL. We repeat this process for 100 different random perturbations to

the Poisson distribution, and report the mean, minimum and maximum flagging rates for these

100 trials. We repeat this entire process for both the CMS and OPTN criteria, and for risk values

α ∈ {0.97, 0.98, 0.99}.

We create perturbed distributions as follows. For each patient class i ∈ I, we truncate a Poisson

distribution with mean λi at the 10th spot—i.e., we assume that no more than 10 patients from

class i will arrive each week. Let pi ∈ R11 denote the resulting vector of probabilities, so that pij is

the probability that j patients of class i arrive in a single week. The perturbed distribution p̃i is
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Table 8: Sensitivity of program flagging rate to the Poisson arrivals assumption (Assumption 4).
All values are percentages. Reported values are averaged over 100 different sampled distributions.
For each sampled distribution, the flagging rate was estimated from 50, 000 trials.

OPTN CMS

Target (1− α) Mean (Min, Max) Mean (Min, Max)

True 1 1.33 (1.17, 1.45) 1.17 (1.08, 1.34)

2 2.40 (2.25, 2.56) 2.24 (2.08, 2.39)

3 3.46 (3.26, 3.64) 3.25 (3.08, 3.42)

PWL 1 1.44 (1.27, 1.56) 1.40 (1.29, 1.55)

2 2.55 (2.38, 2.70) 2.45 (2.29, 2.60)

3 3.62 (3.40, 3.79) 3.45 (3.28, 3.68)

sampled uniformly from the set of vectors p ∈ [0, 1]11 satisfying

10∑
j=0

pj = 1, (17a)

10∑
j=0

j · pj = λi, (17b)

p0 ≥ pi0, (17c)

∥p− pi∥ ≤ ε = 0.1. (17d)

Constraint (17a) ensures that p̃i is a probability distribution, while (17b) ensures that p̃i has

expectation λi (the same as pi). Constraint (17c) is based on the empirical observation (Section 4)

that, in practice, the Poisson distribution underestimates the probability of zero patient arrivals

in a given week. Finally, (17d) ensures that the sampled distribution is not too different from the

truncated Poisson distribution, consistent with empirical data.

The results in Table 8 show that, by removing the Poisson assumption, the observed flag rate

stays within 0.4% of the target value 1− α for the CMS criteria, and 0.6% for the OPTN criteria.

These results indicate that the combined effect of the Poisson assumption and piecewise linearization

used in (MA) is quite small—on the order of one half percent. We note also that the observed flag

rates under the PWL criteria are higher than the true criteria because the PWL criteria were chosen

conservatively, so that g(E) ≥ gPWL(E) for a majority of the E values of interest.
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