
c©Copyright 2018

Saumya Sinha

Robust dynamic optimization: theory and applications

Saumya Sinha

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2018

Reading Committee:

Archis Ghate, Chair

Aleksandr Aravkin

Michael R. Wagner

Program Authorized to Offer Degree:
Applied Mathematics

University of Washington

Abstract

Robust dynamic optimization: theory and applications

Saumya Sinha

Chair of the Supervisory Committee:
Professor Archis Ghate

Industrial & Systems Engineering, and Applied Mathematics

Many applications in decision-making use a dynamic optimization framework to model a

system evolving uncertainly in discrete time, and an agent who chooses actions/controls from

a set of available choices in order to minimize a suitable cost function. An important aspect

of model formulation is the choice of input parameters. These are traditionally estimated

from historical data and prior domain knowledge, and treated as known quantities in the

decision-making process. This approach ignores any estimation errors or misspecification in

the problem data, leading to potentially suboptimal solutions. Robust optimization addresses

this issue by treating the parameters themselves as unknown quantities, known only to lie

within some set of plausible values called the ‘uncertainty set’. The decision-maker then

follows a conservative approach and minimizes a ‘worst-case’ cost over all possible values of

the parameter. Problems of this nature are the subject of this dissertation.

The first chapter provides a background on infinite-horizon Markov decision processes

(MDPs) and the Newsvendor model. MDPs are sequential decision-making problems with

infinitely many decision epochs. At the end of every epoch, the next state of the system is

prescribed via a transition probability depending on the current state and the action cho-

sen. The robust formulation allows for these transition probabilities to be unknown, and the

decision-maker minimizes the maximum expected total discounted cost. A detailed analytical

treatment of robust MDPs with bounded immediate costs, along with robust versions of the

the standard solution methods of value iteration and policy iteration, is available in the lit-

erature. However, these methods cannot be implemented when the state-space is countable.

Further, no theoretical framework is available for the case when costs are unbounded. These

issues are addressed in Chapters 2 to 4. The Newsvendor model is a classical framework for

inventory management over a finite horizon under demand ambiguity, and a robust formu-

lation described in Chapter 5 circumvents the issue of assuming distributional information

on this demand.

Robust nonstationary MDPs: In the second chapter, I consider an infinite-horizon

robust MDP for which immediate costs are time-dependent but uniformly bounded, and the

uncertainty sets vary with time. The state- and action-spaces are assumed to be finite. The

optimal value function can be obtained from the robust Bellman equations [28], but the non-

stationarity of the data results in an infinite system of equations to be solved. I provide a

policy iteration algorithm which uses finite-dimensional approximations to policy evaluation

and policy improvement, so that each step of the algorithm requires a finite amount of

memory and computation, and as such, can be used in practice. These approximations are

chosen adaptively to guarantee that the algorithm achieves sufficient improvement in each

iteration, so that the values of the policies generated by the algorithm monotonically converge

pointwise to the optimal. The policies converge subsequentially to an optimal policy.

Robust countable-state MDPs with bounded costs: In the third chapter, I gen-

eralize the above setup to solve robust stationary MDPs with countable state-spaces. Im-

mediate costs as well as the uncertainty sets are time-invariant in this case. The costs are

non-negative and bounded, and the action-spaces are finite. In this case as well, an as-is ex-

ecution of the existing policy iteration method is not possible, owing to three main reasons.

The first issue arises due to the countable nature of the state-space that necessitates the

solution of an infinite system of equations, and is addressed via state-space truncation. The

other two complications arise from the nonlinearity of the robust evaluation operator and

the need for solving the so-called inner problems to arbitrary accuracy. These are addressed

by successive approximation and a careful selection of uncertainty sets. Thus, I present an

approximate policy iteration algorithm that can be used in practice. Value functions of the

policies generated by the algorithm converge to the optimal, while the policies themselves

converge subsequentially to an optimal policy. Robust MDPs with interval uncertainty sets,

robust MDPs with bounded state-transitions, and a robust equipment replacement model

are presented as examples where the algorithm can be implemented.

Robust countable-state MDPs with unbounded costs: The third chapter further

widens the scope by allowing the immediate cost functions to be unbounded. A theoretical

treatment of these MDPs is not available in the literature, and I develop such a framework

here. Standard assumptions for unbounded-cost MDPs are generalized to the robust case.

The robust Bellman operator is shown to be a J-step contraction mapping, which guarantees

the existence of a unique solution to the robust Bellman equations. Optimality of the robust

Bellman equations is also established.

A robust multi-period newsvendor model with inventory balance constraints:

In the fourth chapter, I study a different approach to dynamic optimization by means of

an application in inventory control. A seller managing the inventory of a single product

over multiple periods must determine the optimal order quantity per period in the face of

uncertain demand. This problem is solved via a newsvendor model, and the optimal solution

is a function of the purchase, shortage and holding costs as well as the revenue earned per

unit. Here, I formulate a robust multi-period newsvendor model to address the ambiguity

in demand, and the seller maximizes his ‘worst-case’ total profit. Closed-form expressions

for robust optimal order quantities are provided, and their relationship with various cost

parameters is analyzed. Explicit optimal solutions to the inner-problems are obtained for

a large class of uncertainty sets. Additionally, a numerical comparison of the robust model

with a stochastic one is presented for benchmarking.

TABLE OF CONTENTS

Page

List of Figures . iii

Chapter 1: Background . 1

1.1 Markov decision processes . 1

1.2 Policy iteration . 2

1.3 Robust Markov decision processes . 3

1.4 Newsvendor model . 5

Chapter 2: Policy iteration for robust nonstationary Markov decision processes . . 7

2.1 Introduction . 7

2.2 Problem setup and algorithm . 8

2.3 Convergence results . 13

Chapter 3: Approximate policy iteration for robust countable-state Markov decision
processes with bounded costs . 26

3.1 Introduction . 26

3.2 Problem formulation . 27

3.3 Challenges in designing policy iteration . 29

3.4 Algorithm . 33

3.5 Convergence results . 36

3.6 Examples . 68

3.7 Conclusion . 75

Chapter 4: Robust countable-state Markov decision processes with unbounded costs 77

4.1 Introduction . 77

4.2 Problem Setup . 77

4.3 Theoretical Results . 80

i

Chapter 5: A robust multi-period newsvendor model with inventory-balance con-
straints . 93

5.1 Introduction . 93

5.2 Model . 96

5.3 Closed-form Solutions for an Arbitrary Uncertainty Set 102

5.4 Benchmarking with Computational Experiments 124

5.5 Conclusion . 131

ii

LIST OF FIGURES

Figure Number Page

3.1 A schematic representation of the interdependence of results in Section 3.5. . 39

5.1 An illustrative plot of Q∗j + I0 for a robust newsvendor model with seven
periods under various relations between the parameters. 115

5.2 Numerical results for the case where the stochastic model assumes an incorrect
demand distribution with correct moments. 129

5.3 Numerical results for the case where the stochastic model assumes the correct
demand distribution with incorrect moments. 131

iii

1

Chapter 1

BACKGROUND

1.1 Markov decision processes

Markov decision processes (MDPs) model a large class of sequential decision-making prob-

lems under uncertainty [35]. A system evolves in discrete time and the beginning of each

time-period is called a decision epoch. The total number of epochs can be finite or infinite,

and the corresponding MDPs are called finite-horizon and infinite-horizon, respectively. The

latter model systems that do not have a predefined time of extinction. In this case, the

epochs are indexed by t ∈ {0, 1, 2, . . .}. At each epoch, the system occupies a state s ∈ S,

where S is the set of all possible states. A decision-maker observes the current state and

chooses an action a from a set A of available choices. Once an action has been chosen, the

system advances to a new state s′ ∈ S according to a transition probability distribution

p(·|s, a) that depends on the current state s and the action chosen a. This transition incurs

a cost c(s, a, s′). Different cost criteria can be employed to measure performance, and the

expected total discounted cost criterion is one of the most common. Here, the cost incurred

in period t is discounted by a factor λt for some constant λ ∈ (0, 1). A (Markovian de-

terministic stationary) policy is a rule that assigns an action to each possible state. The

decision-maker’s objective is to find a policy that minimizes the expected total discounted

cost over the infinite horizon.

For example, in a queueing model, the state can be be the number of jobs waiting in a

queue, and the action would be the number of jobs accepted for service. In an inventory man-

agement model, the state can be defined as the current inventory level and the action would

be the order quantity. Other common applications include scheduling, medical treatment

planning, and transportation [16].

2

Cost is minimized by solving Bellman’s equations of dynamic programming

v∗(s) = inf
a∈A

∑
s′∈S

p(s′|s, πk(s))[c(s, πk(s), s′) + λv∗(s′)], s ∈ S. (1.1)

Here, v∗ : S → R is the optimal value function. An optimal policy, if it exists, is constructed

by choosing an action from the argmin set in (1.1) for each state. Therefore, solving an

MDP amounts to solving the system of equations in (1.1), and this is done primarily by three

methods – policy iteration, value iteration, and linear programming. In this dissertation, we

restrict our attention to policy iteration.

1.2 Policy iteration

Policy iteration is standard method for solving MDPs [26]. The algorithm starts out with

an arbitrary initial policy π1. Then, in very iteration k = 1, 2, . . ., the following steps are

executed.

1. Policy evaluation: This step computes vπ
k
(s), the expected total discounted cost

incurred under policy πk when the system is initially in state s. The function vπ
k

:

S → R is called the value function of πk. We have

vπ
k

(s) =
∑
s′∈S

p(s′|s, πk(s))[c(s, πk(s), s′) + λvπ
k

(s′)], s ∈ S. (1.2)

2. Policy improvement: Once the value of the current policy has been computed, a

new policy is constructed as follows.

(a) For each state-action pair (s, a), compute

γπ
k

(s, a) =
∑
s′∈S

p(s′|s, a(s))[c(s, a(s), s′) + λvπ
k

(s′)]− vπk(s). (1.3)

The term γπ
k
(s, a) determines the improvement in total discounted cost if action

3

a is chosen in state s (instead of that prescribed by πk). Therefore, γ(s, πk(s)) = 0

for all s. A negative value of γ(s, a) indicates that action a is a better choice in

state s since it leads to a reduction in overall cost.

(b) Maximum improvement – The algorithm then identifies a state-action pair (sk, ak)

which gives the largest reduction in overall cost, by choosing

(sk, ak) = argmin
s∈S, a∈A

γπ
k

(s, a). (1.4)

(c) Policy update – If γπ
k
(sk, ak) ≥ 0, it implies that the total cost cannot be improved

any further, and the current policy must be optimal.

Otherwise, a new policy πk+1 is constructed by choosing action ak in state sk and

keeping all other actions the same. That is, πk+1(sk) = ak and πk+1(s) = πk(s)

for all s 6= sk.

The above steps are repeated in every iteration until an optimal solution has been found.

When the state- and action-spaces are finite, this algorithm discovers an optimal policy

in a finite number of iterations (see Theorem 6.4.2 in [35]). The general policy iteration

algorithm allows for actions across multiple states to be updated in each iteration. The

method described above is the so-called ‘simple’ version of policy iteration where an action

in only one state is updated in each iteration. Simple policy iteration is easier to implement

and has been proven to exhibit strongly polynomial complexity [46].

1.3 Robust Markov decision processes

In the traditional study of MDPs as described above, the state-transition probabilities are

treated as model parameters known a priori to the decision-maker. In practice, however,

statistical estimates of these probabilities are obtained from historical data and used as

a proxy for the true distributions. The resulting estimation errors are not accounted for,

which may lead to potentially suboptimal solutions. Robust MDPs try to address this

4

limitation by assuming that the transition probabilities are ambiguous and known only to

lie in an “uncertainty set” of plausible distributions. In particular, for each state-action

pair (s, a), there is a set Pas of probability distributions over S such that p(·|s, a) ∈ Pas . The

objective then is to minimize the worst-case expected total discounted cost over all transition

probabilities from these uncertainty sets. When the immediate costs c(s, a, s′) are assumed

to be uniformly bounded over all states s, s′ and actions a, it has been shown in [28] and

nilim that the optimal value function v∗ is the solution of a robust counterpart of Bellman’s

equations. That is,

v∗(s) = sup
p(·|s,a)∈Pas

∑
s′∈S

p(s′|s, πk(s))[c(s, πk(s), s′) + λv∗(s′)], s ∈ S.

Variants of policy iteration and value iteration for solving robust MDPs have been described

in [28], where it is also noted that the linear programming formulation does not have a

natural robust extension. Once again, we will focus on policy iteration.

Robust policy iteration: The main idea behind policy iteration remains the same in the

robust variant. The algorithm starts with an arbitrary initial guess for an optimal policy.

In the k-th iteration, k = 1, 2, . . ., the worst-case value function for the current policy is

computed via the equation

vπ
k

(s) = sup
p∈Pπ

k(s)
s

∑
s′∈S

p(s′|s, πk(s))[c(s, πk(s), s′) + λvπ
k

(s′)], s ∈ S.

Similarly, the most improving state-action pair (sk, ak) is determined by a robust counterpart

of Equations (1.3) and (1.4), as defined below.

(sk, ak) = argmin
s∈S,a∈A

sup
p∈Pπ

k(s)
s

∑
s′∈S

p(s′|s, a(s))[c(s, a(s), s′) + λvπ
k

(s′)]− vπk(s).

5

Then, if the current policy is found to be suboptimal, it is updated in state sk as before, and

the algorithm proceeds to the next iteration. Once again, [28] establishes that the algorithm

finds an optimal policy in a finite number of steps if S and A are finite. Convergence in the

countable-state case, however, has not been established. Moreover, the theoretical framework

does not apply when the immediate costs are unbounded. These issues are addressed in

Chapters 2-4 of this dissertation.

1.4 Newsvendor model

Chapter 5 explores a different approach to dynamic optimization by way of an application

in inventory management. Consider a seller managing the inventory of a single product. He

must decide how much of a product to order in every period j = 1, 2, . . . , n over some (finite)

horizon. Let dj ≥ 0 be the demand for this product in the j-th period, and let qj ≥ 0 be the

amount of new product that the seller purchases in the same period. If the demand in any

period exceeds the current inventory level, it is backlogged and the seller seeks to satisfy it

in a future period, but this incurs a shortage cost s per unit. On the other hand, any surplus

inventory can be utilized later as well, but the seller pays a holding cost of h per unit. As

such, the decision in any period must account for its future consequences. If c ≥ 0 and r ≥ 0

are the purchase cost and sale revenue per unit respectively, the profit function is given by

Π(q, d) = rmin
{ n∑

j=1

qj,
n∑
j=1

dj

}
︸ ︷︷ ︸

Total revenue

−
(n∑
j=1

cqj + max{hIj,−sIj}
)

︸ ︷︷ ︸
Total cost

.

Here, Ij =
j∑
i=1

qi− di is the inventory at the end of period j, assuming that there is no initial

inventory. The seller seeks to find optimal order quantities in order to maximize his total

6

profit over the n periods. This is achieved by solving the following linear program.

min
q≥0

n∑
j=1

yj

s.t. yj ≥ (h+ δjnc)

j∑
i=1

(qi − di), j = 1, . . . , n,

yj ≥ (s+ δjn(r − c))
j∑
i=1

(di − qi) j = 1, . . . , n,

where δjn is the kronecker delta which takes the value 1 when j = n, and 0 otherwise.

This is easy to solve if the demand is known, which is unrealistic in practice. The true

demand is almost never known a priori. Trasditionally, this is resolved by assuming that

the demand is a random variables with known distribution. This gives rise to the classical

stochastic newsvendor model, and optimal order quantities are recovered through stochastic

optimization techniques. As before, this approach is prone to suboptimality due to estimation

errors; robust optimization addresses this limitation. A robust newsvendor model for worst-

case profit maximization appears in Chapter 5.

7

Chapter 2

POLICY ITERATION FOR ROBUST NONSTATIONARY
MARKOV DECISION PROCESSES

2.1 Introduction

Nonstationary MDPs1 are a generalization of stationary MDPs, where the problem data are

no longer assumed to be time-invariant [17, 19, 25]. An asymptotically convergent simple

policy iteration algorithm for “nominal” (i.e., non-robust) MDPs was developed recently

in [22]. That paper also analyzed in detail a close connection between this simple policy

iteration and an infinite-dimensional simplex method. In this chapter, we develop a solution

method for robust nonstationary MDPs.

The classic policy iteration algorithm was extended to the robust case in [28]. For finite-

state, finite-action, stationary MDPs, it discovers a robust optimal policy in a finite number

of iterations. This result was proven in [28] by invoking Theorem 6.4.2 from [35]. In fact,

the policy iteration algorithm in [28] was presented for robust countable-state stationary

MDPs. Hence, it is, in principle, applicable to nonstationary MDPs because, as shown

in [22], nonstationary MDPs can be viewed as a special case of countable-state stationary

MDPs by appending the states with a time-index. An “as is” execution of this algorithm,

however, is not possible for countable-state or for nonstationary MDPs because it would call

for infinite computations in both the policy evaluation and policy improvement steps of every

iteration. Specifically, an implementable and provably convergent version of policy iteration

is currently not available for robust nonstationary MDPs. We develop such an algorithm in

this paper.

1Most MDPs discussed in this chapter are finite-state, finite-action and infinite-horizon; we therefore omit
such qualifiers for brevity throughout, unless they are essential for clarity.

8

The key idea in our approach is that it proposes finitely implementable approximations of

policy evaluation and simple policy improvement with steepest descent. These approxima-

tions are designed adaptively such that the resulting sequence of policies has monotonically

decreasing costs. Moreover, the cost-improvement in consecutive iterations is large enough to

guarantee convergence to optimality (see [22] for a counterexample of a nonstationary MDP

where simply guaranteeing a cost-improvement in each iteration is not enough for conver-

gence to optimality). These statements are made precise in the next two sections. We focus

on the simple version of policy iteration to keep notation at a minimum, but our algorithm

and proof of convergence can be generalized to a full version without technical difficulty. The

only change needed in this full version is that instead of choosing a single period-state pair

for updating an action, we select each pair that provides a sufficient improvement.

2.2 Problem setup and algorithm

Consider a nonstationary MDP with decision epochs n = 1, 2, At the beginning of each

period n, the system occupies a state s ∈ S, where S = {1, 2, . . . , S} is a finite set. A

decision-maker observes this state and chooses an action a ∈ A, where A = {1, 2, . . . , A}

is also a finite set. Given that action a was chosen in state s in period n, the system

makes a transition to state s′ at the beginning of period n + 1 with probability pn(s′|s, a),

incurring a nonnegative and bounded cost 0 ≤ cn(s, a, s′) ≤ c for some bound c. This process

continues ad infinitum, starting the first period in some initial state s1 ∈ S. A (deterministic

Markovian) policy π is a mapping that prescribes actions πn(s) in states s ∈ S in periods

n ∈ N. The decision-maker’s objective is to find a policy that simultaneously (for all s ∈ S

and all n ∈ N) minimizes the infinite-horizon discounted expected cost incurred on starting

period n in state s. The single-period discount factor is denoted by 0 ≤ λ < 1. We note,

as an aside, that it is not possible in general to finitely describe the input data needed to

completely specify a nonstationary MDP. It is therefore standard in the literature to assume

the existence of a “forecast oracle” that, when queried by supplying a positive integer m,

returns the cost and probability data for the first m periods. We work in this paper with

9

nonstationary MDPs defined in this manner and refer the reader to [17, 20, 22] for detailed

discussions of this issue. Following the language of robust optimization, we will call the

problem described in this paragraph a nominal nonstationary MDP.

In the above nominal MDP, the transition probabilities pn(s′|s, a) are assumed to be

known. Robust nonstationary MDPs account for estimation errors in these transition prob-

abilities by instead assuming that for each state-action pair (s, a) in period n, the (condi-

tional) probability mass function (pmf) pn(·|s, a) of the next state is only known to lie in

some nonempty compact set Pan,s. This set is called the uncertainty set and it is a subset

of the probability simplex M(S) = {q ∈ RS
+ | q1 + . . . + qS = 1}. Specifically, robust non-

stationary MPDs pursue an adversarial modeling approach where the adversary, also often

called “nature”, observes the state s in period n as well as the action a chosen there by

the decision-maker and then selects a pmf pn(·|s, a) from the uncertainty set Pan,s. As per

the standard “rectangularity assumption”, nature’s pmf selection in n, s, a is assumed to be

independent of the history of previously visited states and actions and also of the actions

chosen in other states (see [28, 33]). The decision-maker’s objective is to find a policy that

simultaneously (for all s ∈ S and all n ∈ N) minimizes the “worst-case” (with respect to all

possible adversarial choices) infinite-horizon discounted expected cost incurred on starting

period n in state s.

This finite-state, finite-action robust nonstationary MDP can be equivalently viewed as a

robust stationary MDP with the countable state-space S ×N by appending states s with the

time-index n. Let v∗n(s) denote the decision-maker’s minimum worst-case cost, against all

adversarial policies, on starting period n ∈ N in state s ∈ S. The functions v∗n : S → R+ are

called robust optimal cost-to-go functions, and according to the theory of robust countable-

state stationary MDPs from [28], they are unique solutions of the Bellman’s equations

v∗n(s) = min
a∈A

{
max

pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λv∗n+1(s′)

])
︸ ︷︷ ︸

inner problem

}
, (2.1)

10

for s ∈ S and n ∈ N. Actions that achieve the outer minima in the above equations define

a robust optimal policy. Similarly, the infinite-horizon expected discounted cost incurred by

implementing a policy π starting in state s in period n is denoted by vπn(s). These costs-to-go

are characterized by the infinite system of equations

vπn(s) = max
pn(·|s,πn(s))∈Pπn(s)

n,s

(∑
s′∈S

pn(s′|s, πn(s))
[
cn(s, πn(s), s′) + λvπn+1(s′)

])
, s ∈ S, n ∈ N.

(2.2)

For the robust nonstationary MDP described above, an “as is” execution of robust policy

iteration from [28] would roughly amount to the following algorithm. Start with an initial

policy π1. In iteration k ≥ 1, solve the infinite system of equations in (2.2) to obtain the

cost-to-go function vπ
k

of policy πk. This is the policy evaluation step. Then, update policy

πk to a new policy πk+1 that prescribes an action from the set

argmin
a∈A

{
max

pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπ

k

n+1(s′)
])}

(2.3)

in each state s ∈ S in each period n ∈ N. This is the policy improvement step. Unfortunately,

both these steps require infinite computations, rendering this algorithm unimplementable.

We remedy the above situation by proposing approximate implementations of policy

evaluation and simple policy improvement. Specifically, in the policy evaluation step of

the kth iteration, the cost-to-go function of policy πk is approximated by the cost-to-go

function of an m(k)-horizon truncation of that policy. In the simple policy improvement

step of the kth iteration, an action is updated in state s(k) in period n(k) somewhere

in the first m(k)-periods via the steepest descent rule applied to this cost-to-go function

approximation. In order to guarantee that all actual infinite-horizon costs vπ
k+1

n (s) of the

resulting new policy πk+1 improve upon the actual infinite-horizon costs vπ
k

n (s) of the old

policy πk, the truncation-length m(k) is chosen adaptively via an iterative procedure such

that the corresponding steepest improvement in the m(k)-horizon cost-approximations is

11

large enough. In fact, the discussion in [22] and a counterexample in [23] show that even

in the context of nominal nonstationary MDPs, it is not enough (for value convergence to

optimality) to simply ensure that πk+1 improves upon πk; it is essential to guarantee that

the improvement is sufficiently large. As we shall see in Section 2.3, our choice of m(k) also

carefully handles this delicate issue. The details of this procedure are listed in Algorithm 1

below.

Note that although policy πk in the kth iteration of this algorithm is “infinite-dimensional”,

it is described finitely because (i) π1 is chosen such that it has a finite representation, and

(ii) only a single component is changed in each iteration. Consequently, πk can be stored on

a computer. In addition, we emphasize that each iteration of this algorithm performs only

a finite amount of computations. We also make the minor observation that the value of m

is initiated at n(k − 1) in Step 2(a) of our algorithm, whereas m was initiated at 1 in the

simple policy iteration algorithm for nominal nonstationary MDPs in [22]. This initial value

of m = 1 was inefficient (in the sense that it called for unnecessary additional computations)

because m(k) is bounded below by n(k − 1) in their nominal case as well as in our robust

case. This holds because the steepest descent action in the kth iteration cannot be found for

a horizon m shorter than n(k − 1) as policies πk−1 and πk prescribe identical actions in the

first n(k − 1)− 1 periods.

We prove in the next section that the sequence of costs vπ
k

n (s) corresponding to the policies

πk produced by this algorithm monotonically converges pointwise to the optimal costs v∗n(s)

as k →∞. We also establish subsequential convergence of the corresponding policies πk to an

optimal policy. The main ideas in our algorithm and proofs are similar to the aforementioned

recent work on simple policy iteration for nominal nonstationary MDPs [22]; the details are

modified to accommodate our robust counterpart. For instance, the proofs in [22] for the

nominal case thoroughly exploited the close connection between simple policy iteration and

an infinite-dimensional simplex algorithm with the steepest descent pivoting rule. We cannot

pursue that approach here because robust MDPs do not have an equivalent LP formulation

(see [28]).

12

Algorithm 1 Simple policy iteration for robust nonstationary MDPs.

1: Initialize: Set iteration counter k = 1. Arbitrarily fix the initial policy π1 to one that
prescribes the first action in A in every state in every period. Let n(0) = 1.

2: for iterations k = 1, 2, 3, . . ., do
(a) Set m = n(k − 1). Let m(k) =∞ and γk,∞ = 0.
Approximate policy evaluation:

(b) Compute the m-horizon approximation vk,m of the cost-to-go function vπ
k

as

vk,mm+1(s) = 0, ∀s ∈ S, (2.4)

vk,mn (s) = max
pn(·|s,πkn(s))∈Pπ

k
n(s)

n,s

(∑
s′∈S

pn(s′|s, πkn(s))
[
cn(s, πkn(s), s′) + λvk,mn+1(s′)

])
, ∀s ∈ S, n ≤ m.

(2.5)

Approximate simple policy improvement:
(c) Compute the approximate Q-function

Qk,m
n (s, a) = max

pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)

[
cn(s, a, s′) + λvk,mn+1(s′)

])
, s ∈ S, a ∈ A, n ≤ m. (2.6)

(d) Compute γk,mn (s, a) = λn−1
(
Qk,m
n (s, a) − vk,mn (s)

)
, for s ∈ S, a ∈ A, and n ≤ m.

Then calculate the amount of steepest descent

γk,m = min
s∈S

a∈A,a 6=πkn(s)
1≤n≤m

γk,mn (s, a). (2.7)

(e) If γk,m < −λm c
1−λ , set m(k) = m, let (n(k), s(k), a(k)) be an argmin in (2.7), and

update πk to πk+1 by replacing πkn(k)(s(k)) with a(k); else set m = m+ 1 and go to Step

2(b) above.
3: end for

13

2.3 Convergence results

Our two main convergence results in this paper appear toward the end of this section in

Theorems 2.3.7 and 2.3.8. The proofs of these two theorems utilize several lemmas that we

prove next.

The lemma below establishes a simple, fundamental property of Bellman’s equations.

Lemma 2.3.1. Suppose policy π is not optimal. Then there exist a state s ∈ S, an action

a ∈ A, and a period n ∈ N such that

Qπ
n(s, a) = max

pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπn+1(s′)

])
< vπn(s). (2.8)

Proof. Suppose not. Then, for each n ∈ N and each s ∈ S, we have,

max
pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπn+1(s′)

])
≥ vπn(s), ∀a ∈ A.

Consequently, for each n ∈ N and each s ∈ S, we obtain,

vπn(s) = max
pn(·|s,πn(s))∈Pπn(s)

n,s

(∑
s′∈S

pn(s′|s, πn(s))
[
cn(s, πn(s), s′) + λvπn+1(s′)

])

≥ min
a∈A

{
max

pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπn+1(s′)

])}
≥ vπn(s).

This shows that, for each n ∈ N and each s ∈ S,

vπn(s) = min
a∈A

{
max

pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπn+1(s′)

])}
.

This shows that the cost-to-go functions vπn satisfy Bellman’s equations. Then π must be

optimal. This is a contradiction.

Within each iteration, our algorithm computes an m-horizon approximation vk,m to the

14

true infinite-horizon cost-to-go function vπ
k

of the policy πk. The lemma below provides

bounds for the quality of this approximation.

Lemma 2.3.2. The approximation vk,m of vπ
k

in Step 2(b) of Algorithm 1 satisfies

vk,mn (s) ≤ vπ
k

n (s) ≤ vk,mn (s) + λm+1−n c

1− λ
, ∀s ∈ S, n = 1, 2, . . . ,m+ 1. (2.9)

Proof. We prove the claim by backward induction on n = m+ 1,m, . . . , 1.

Since the costs are nonnegative and bounded above by c, we know that vπ
k

satisfies

0 ≤ vπ
k

m+1(s) ≤ c/(1 − λ). Also, vk,mm+1(s) = 0 for all s ∈ S by (2.4). So, for n = m + 1, we

trivially have,

vk,mm+1(s) ≤ vπ
k

m+1(s) ≤ vk,mm+1(s) + λm+1−n c

1− λ
, ∀s ∈ S.

Now, assume, as the inductive hypothesis, that the claim is true for n+ 1. That is,

vk,mn+1(s′) ≤ vπ
k

n+1(s′) ≤ vk,mn+1(s′) + λm−n
c

1− λ
, ∀s′ ∈ S.

After multiplying each term by λ and then adding cn(s, a, s′) to all terms, this implies that

cn(s, a, s′) + λvk,mn+1(s′) ≤ cn(s, a, s′) + λvπ
k

n+1(s′) ≤ cn(s, a, s′) + λvk,mn+1(s′) + λm+1−n c

1− λ
,

for all s, s′ ∈ S and a ∈ A. Consequently, for the specific actions πkn(s) prescribed by the

policy πk, we have,

cn(s, πkn(s), s′)+λvk,mn+1(s′) ≤ cn(s, πkn(s), s′)+λvπ
k

n+1(s′) ≤ cn(s, πkn(s), s′)+λvk,mn+1(s′)+λm+1−n c

1− λ
,

for all s, s′ ∈ S. Now, for a fixed s ∈ S, consider any pmf pn(·|s, πkn(s)) ∈ Pπ
k
n(s)

n,s . By

15

multiplying the above inequalities with this pmf and then adding over all s′ ∈ S, we obtain,

∑
s′∈S

pn(s′|s, πkn(s))
[
cn(s, πkn(s), s′) + λvk,mn+1(s′)

]
≤
∑
s′∈S

pn(s′|s, πkn(s))
[
cn(s, πkn(s), s′) + λvπ

k

n+1(s′)
]

≤
∑
s′∈S

pn(s′|s, πkn(s))
[
cn(s, πkn(s), s′) + λvk,mn+1(s′)

]
+ λm+1−n c

1− λ
.

Then, by taking the maximum of each side of these inequalities over all such pmfs in Pπ
k
n(s)

n,s ,

we obtain,

max
pn(·|s,πkn(s))∈Pπ

k
n(s)

n,s

(∑
s′∈S

pn(s′|s, πkn(s))
[
cn(s, πkn(s), s′) + λvk,mn+1(s′)

])
≤ max

pn(·|s,πkn(s))∈Pπ
k
n(s)

n,s

(∑
s′∈S

pn(s′|s, πkn(s))
[
cn(s, πkn(s), s′) + λvπ

k

n+1(s′)
])

≤ max
pn(·|s,πkn(s))∈Pπ

k
n(s)

n,s

(∑
s′∈S

pn(s′|s, πkn(s))
[
cn(s, πkn(s), s′) + λvk,mn+1(s′)

])
+ λm+1−n c

1− λ
.

These maxima preserve the order of the earlier inequalities because of the following property:

if one function is everywhere smaller than another function, then the maximum of the first

function is smaller than the maximum of the second function provided that the maxima are

taken over identical sets. Then, by (2.2) and (2.5), we have,

vk,mn (s) ≤ vπ
k

n (s) ≤ vk,mn (s) + λm+1−n c

1− λ
, ∀s ∈ S.

This restores the inductive hypothesis and completes the proof by induction.

Step 2 of the algorithm iteratively increases the value of the approximating horizon’s

length m until a horizon that guarantees a large enough improvement is discovered. The

algorithm thus runs the risk of being caught in an infinite loop, wherein it never discovers

such a horizon. The next lemma tackles this issue.

Lemma 2.3.3. Step 2 of Algorithm 1 terminates at a finite value of m if and only if policy

πk is not optimal.

16

Proof. Suppose πk is not optimal. Then, by Lemma 2.3.1, there exist a period n ∈ N, s ∈ S,

and an action a ∈ A such that Qπk

n (s, a) < vπ
k

n (s). Thus, let ε = vπ
k

n (s) − Qπk

n (s, a) > 0.

Then, by Lemma 2.3.2, we have,

ε = vπ
k

n (s)−Qπk

n (s, a) = vπ
k

n (s)− max
pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπ

k

n+1(s′)
])

≤ vk,mn (s) + λm+1−n c

1− λ
− max

pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvk,mn+1(s′)

])
= vk,mn (s) + λm+1−n c

1− λ
−Qk,m

n (s, a) = λ1−n
(
λm

c

1− λ
− λn−1

(
Qk,m
n (s, a)− vk,mn (s)

))
≤ λ1−n

(
λm

c

1− λ
− γk,m

)
.

where the last inequality holds by the definition of γk,m in Step 2(d) of the algorithm.

This inequality yields λ1−nγk,m ≤ λm+1−n c
1−λ − ε. For a sufficiently large m, we have that

λm+1−n c
1−λ < ε/2 because 0 ≤ λ < 1. Therefore, for any such large m, we have, λm+1−n c

1−λ−

ε < −ε/2 < −λm+1−n c
1−λ . Thus, we obtain, λ1−nγk,m < −λm+1−n c

1−λ , that is, γk,m <

−λm c
1−λ . Thus, if the policy πk is not optimal, there exists a large enough m for which the

stopping condition in Step 2(e) of the algorithm is satisfied, and Step 2 terminates finitely.

Conversely, suppose policy πk is optimal, and Step 2 of the algorithm terminates for

some m(k). Then, γk,m(k) + λm(k) c
1−λ < 0. That is, γ

k,m(k)
n(k) (s(k), a(k)) + λm(k) c

1−λ < 0, where

(n(k), s(k), a(k)) is the argmin in (2.7) with a(k) 6= πkn(k)(s(k)). That is, λ1−n(k)γ
k,m(k)
n(k) (s(k), a(k))+

λm(k)+1−n(k) c
1−λ < 0. Then, by the definition of γ

k,m(k)
n(k) (s(k), a(k)), this implies thatQ

k,m(k)
n(k) (s(k), a(k))−

v
k,m(k)
n(k) (s(k)) + λm(k)+1−n(k) c

1−λ < 0. Then, by using the definition of Q
k,m(k)
n(k) (s(k), a(k)) as in

(2.6), we get,

max
pn(k)(·|s(k),a(k))∈Pa(k)

n(k),s(k)

(∑
s′∈S

pn(k)(s
′|s(k), a(k))

[
cn(s(k), a(k), s′) + λv

k,m(k)
n(k)+1(s′)

])
−

v
k,m(k)
n(k) (s(k)) + λm(k)+1−n(k) c

1− λ
< 0.

By applying Lemma 2.3.2, the above strict inequality implies thatQπk

n(k)(s(k), a(k)) < vπ
k

n(k)(s(k)).

17

In other words, the optimal cost-to-go function vπ
k

violates Bellman’s equation (2.1) in state

s(k) in period n(k). But this contradicts the optimality of πk. This completes the proof of

the lemma.

The lemma implies that if πk is optimal, then Step 2 of the algorithm never terminates.

One subtlety here is that the algorithm therefore cannot tell that it has discovered an optimal

policy. As explained in more detail in [22], this, however, is not a limitation of our algorithm.

Rather, it is rooted in a fundamental property of nonstationary sequential decision problems

that optimality cannot be verified, in general, with finite computation.

The next lemma shows that, despite the approximations they employ, our policy evalua-

tion and simple policy improvement steps produce a sequence of policies with nonincreasing

cost-to-go functions.

Lemma 2.3.4. Suppose policy πk is not optimal. Then vπ
k+1

n (s) ≤ vπ
k

n (s) for all periods

n ∈ N and all states s ∈ S, with this inequality being strict when n = n(k) and s = s(k).

Furthermore, vπ
k+1

n(k) (s(k))− vπkn(k)(s(k)) ≤ λ1−n(k)

(
λm(k) c

1−λ + γk,m(k)

)
.

Proof. Since policy πk is not optimal, Step 2 of the algorithm terminates at some m(k) by

Lemma 2.3.3. Also, policies πk+1 and πk differ only in the actions they prescribe in period

n(k) ≤ m(k) in state s(k). Consequently, vπ
k+1

n (s) = vπ
k

n (s) for all s ∈ S and all n > n(k).

Similarly, vπ
k+1

n(k) (s) = vπ
k

n(k)(s) for all s(k) 6= s ∈ S. Moreover, (2.2) implies that

18

svπ
k+1

n(k) (s(k)) = max
pn(·|s(k),a(k))∈Pa(k)

n(k),s(k)

(∑
s′∈S

pn(k)(s
′|s(k), a(k))

[
cn(k)(s(k), a(k), s′) + λvπ

k+1

n(k)+1(s′)
])

= max
pn(·|s(k),a(k))∈Pa(k)

n(k),s(k)

(∑
s′∈S

pn(k)(s
′|s(k), a(k))

[
cn(k)(s(k), a(k), s′) + λvπ

k

n(k)+1(s′)
])

≤ max
pn(·|s(k),a(k))∈Pa(k)

n(k),s(k)

(∑
s′∈S

pn(k)(s
′|s(k), a(k))

[
cn(k)(s(k), a(k), s′)+

λ

(
v
k,m(k)
n(k)+1(s′) + λm(k)−n(k) c

1− λ

)])
= max

pn(·|s(k),a(k))∈Pa(k)
n(k),s(k)

(∑
s′∈S

pn(k)(s
′|s(k), a(k))

[
cn(k)(s(k), a(k), s′) + λv

k,m(k)
n(k)+1(s′)

])
+

λm(k)+1−n(k) c

1− λ
,

= Q
k,m(k)
n(k) (s(k), a(k)) + λm(k)+1−n(k) c

1− λ
= λ1−n(k)γk,m(k) + v

k,m(k)
n(k) (s(k)) + λm(k)+1−n(k) c

1− λ
≤ λ1−n(k)γk,m(k) + vπ

k

n(k)(s(k)) + λm(k)+1−n(k) c

1− λ
< vπ

k

n(k)(s(k)).

Here, the first inequality follows by Lemma 2.3.2, the penultimate equality holds by the

definition in (2.6) of Q
k,m(k)
n(k) (s(k), a(k)), the last equality holds by the definition of γk,m(k), the

penultimate inequality holds by Lemma 2.3.2, and finally, the strict inequality follows by the

stopping condition in Step 2(e). In summary, we have shown that vπ
k+1

n(k) (s(k)) < vπ
k

n(k)(s(k))

and that vπ
k+1

n(k) (s(k))− vπkn(k)(s(k)) < λ1−n(k)

(
λm(k) c

1−λ + γk,m(k)

)
. Now we complete the rest

of the proof by induction on n = n(k), n(k) − 1, . . . , 1. To start off this induction process,

we note that the argument thus far has established that vπ
k+1

n (s) ≤ vπ
k

n (s), for all s ∈ S and

n = n(k). Now, as the inductive hypothesis, suppose that vπ
k+1

n (s) ≤ vπ
k

n (s), for all s ∈ S

19

and some n ≤ n(k). Then, from (2.2), we have, for each s ∈ S, that

vπ
k+1

n−1 (s) = max

pn−1(·|s,πk+1
n−1(s))∈P

πk+1
n−1(s)

n−1,s

(∑
s′∈S

pn−1(s′|s, πk+1
n−1(s))

[
cn−1(s, πk+1

n−1(s), s′) + λvπ
k+1

n (s′)
])

= max
pn−1(·|s,πkn−1(s))∈P

πkn−1(s)

n−1,s

(∑
s′∈S

pn−1(s′|s, πkn−1(s))
[
cn−1(s, πkn−1(s), s′) + λvπ

k+1

n (s′)
])

≤ max
pn−1(·|s,πkn−1(s))∈P

πkn−1(s)

n−1,s

(∑
s′∈S

pn−1(s′|s, πkn−1(s))
[
cn−1(s, πkn−1(s), s′) + λvπ

k

n (s′)
])

= vπ
k

n−1(s).

Here, the second equality holds because πk+1 and πk prescribe identical actions in all states in

period n−1, the inequality holds by the inductive hypothesis, and the last equality follows by

the definition of vπ
k

n−1(s). This restores the inductive hypothesis and completes our proof.

Lemma 2.3.5. We have that
[
λm(k) c

1−λ + γk,m(k)
]
→ 0 as k →∞.

Proof. Observe that if πk is optimal for any k, then, by Lemma 2.3.3, Step 2 of the algorithm

does not terminate finitely; hence
[
λm(k) c

1−λ + γk,m(k)
]

= 0 because the algorithm is initiated

with m(k) =∞ and γk,∞ = 0 and hence the claim holds. Now suppose that πk is not optimal

for any k. The algorithm thus produces a sequence of solutions vπ
k
. Now define, for each k,

fk =
∑
n∈N

∑
s∈S

λn−1vπ
k

n (s) and let δk = fk+1− fk. Then, since the sum fk is finite for all k, we

have,

δk =
∑
n∈N

∑
s∈S

λn−1
[
vπ

k+1

n (s)− vπkn (s)
]
≤ λn(k)−1

[
vπ

k+1

n(k) (s(k))− vπkn(k)(s(k))
]

≤ γk,m(k) + λm(k) c

1− λ
< 0,

where the first inequality follows since every term in the sum is non-positive, the second

inequality holds by the second claim in Lemma 2.3.4, and the last inequality follows from

the stopping condition in Step 2(e) of the algorithm. That is, fk is a nonnegative decreasing

sequence of real numbers, hence it converges. This implies that δk → 0 as k → ∞. Since

20

δk ≤ γk,m(k) + λm(k) c
1−λ < 0 for all k, the second claim holds.

The sequence of approximating horizons m(k) in not monotonically increasing in k. The

next lemma shows that it nevertheless diverges to infinity as k →∞. This also implies that

the amount of steepest descent improvement converges to zero.

Lemma 2.3.6. The sequence m(k)→∞ as k →∞. Also, γk,m(k) → 0 as k →∞.

Proof. Identical to the proof of Lemma 5.7 in [22] hence omitted.

Theorem 2.3.7 (Value Convergence). The sequence of cost-to-go functions produced by

Algorithm 1 converges pointwise to the optimal cost-to-go function. That is,

lim
k→∞

vπ
k

n (s) = v∗n(s) for all n ∈ N, s ∈ S. (2.10)

Proof. Policies for the nonstationary MDP lie in the strategy space Φ =
∞∏
n=1

AS ⊂
∞∏
n=1

RS,

which is compact in the metrizable product topology by Tychonoff’s product theorem (see

Theorem 2.61 on page 52 of [1]). In fact, ρ(·, ·) defined by

ρ(π, π̃) =
∞∑
n=1

1

2n

(
d(πn, π̃n)

1 + d(πn, π̃n)

)

where d(·, ·) is the Euclidean metric on RS, is an example of a metric which induces the

product topology on
∞∏
n=1

RS (see Theorem 3.36 on page 89 of [1]). Further, the cost-to-

go functions lie in the set V =

{
v ∈

∞∏
n=1

RS : 0 ≤ vn(s) ≤ c
1−λ , n ∈ N, s ∈ S

}
. Again, by

Tychonoff’s theorem, V ⊂
∞∏
n=1

RS is compact in the metrizable product topology. Since Φ is

compact, the sequence of policies πk has a convergent subsequence πki . Let π̄ be the limit

of this sequence. By the same reasoning, the corresponding sequence of cost-to-go functions

vπ
ki has a convergent subsequence, vπ

kij
, whose limit is, say, v̄.

We first show that v̄ = vπ̄, that is, v̄ is the cost-to-go function corresponding to the policy

π̄.

21

Consider any n ∈ N and s ∈ S. Then, for any j,

vπ
kij

n (s)− max

p(·|s,π
kij
n (s))∈Pπ

kij
n (s)

n,s

∑
s′∈S

p(s′|s, π
kij
n (s))

[
cn(s, π

kij
n (s), s′) + λv

kij
n+1(s′)

]
= 0.

Now, since πkij → π̄ in the product topology, we have that π
kij
n (s)→ π̄n(s) as j →∞. Since

A is a finite set, this implies that there exists a number J(n, s) such that for all j ≥ J(n, s),

π
kij
n (s) = π̄n(s). Hence, for all j ≥ J(n, s), the sets Pπ

kij
n (s)

n,s and P π̄n(s)
n,s are identical, and we

have,

vπ
kij

n (s)− max
p(·|s,π̄n(s))∈P π̄n(s)

n,s

∑
s′∈S

p(s′|s, π̄n(s))
[
cn(s, π̄n(s), s′) + λv

kij
n+1(s′)

]
= 0. (2.11)

For each fixed p(·|s, π̄n(s)) ∈ P π̄n(s)
n,s , we have,

vπ
kij

n (s)−
∑
s′∈S

p(s′|s, π̄n(s))
[
cn(s, π̄n(s), s′) + λv

kij
n+1(s′)

]
≥ 0.

Taking limits as j →∞, this yields,

v̄n(s)−
∑
s′∈S

p(s′|s, π̄n(s)) [cn(s, π̄n(s), s′) + λv̄n+1(s′)] ≥ 0,

for all p(·|s, π̄n(s)) ∈ P π̄n(s)
n,s . This implies

v̄n(s)− max
p(·|s,π̄n(s))∈P π̄n(s)

n,s

∑
s′∈S

p(s′|s, π̄n(s)) [cn(s, π̄n(s), s′) + λv̄n+1(s′)] ≥ 0. (2.12)

Now, we show that inequality (2.12) cannot be strict. For each j ≥ J(n, s), let pkij (·|s, π̄n(s))

be an argmax in (2.11). Then, we rewrite (2.11) as

vπ
kij

n (s)−
∑
s′∈S

pkij (s′|s, π̄n(s))
[
cn(s, π̄n(s), s′) + λv

kij
n+1(s′)

]
= 0.

22

Note that as P π̄n(s)
n,s is a compact subset of RS, the sequence {pkij (·|s, π̄n(s)), j ≥ J(n, s)}

has a convergent subsequence p
kijl . Let p̄(·|s, π̄n(s)) be the limit of this subsequence. For

each l, we have,

v
kijl
n (s)−

∑
s′∈S

p
kijl (s′|s, π̄n(s))

[
cn(s, π̄n(s), s′) + λv

kijl
n+1(s′)

]
= 0.

Taking limits as l→∞, this gives us

v̄n(s)−
∑
s′∈S

p̄(s′|s, π̄n(s)) [cn(s, π̄n(s), s′) + λv̄n+1(s′)] = 0.

Hence, the inequality in (2.12) must be an equality, and we have

v̄n(s)− max
p(·|s,π̄n(s))∈P π̄n(s)

n,s

∑
s′∈S

p(s′|s, π̄n(s)) [cn(s, π̄n(s), s′) + λv̄n+1(s′)] = 0. (2.13)

Since the above is true for all (n, s), we have proved that the limiting cost-to-go function v̄

is the evaluation of the limiting policy π̄, and we denote it by vπ̄.

We now show, by contradiction, that the limiting policy π̄ must be optimal. Suppose π̄

is not optimal. Then, by Lemma 2.3.1, there exists a period n, a state s and an action a

such that

0 < ε = vπ̄n(s)−Qπ̄
n(s, a)

= vπ̄n(s)− max
pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπ̄n+1(s′)

])
. (2.14)

For any j, let p
kij
n (·|s, a) be the argmax in

Qπ
kij

n (s, a) = max
pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπ

kij

n+1 (s′)
])

.

As before, the sequence p
kij
n (·|s, a) has a convergent subsequence p

kijl
n (·|s, a). Let p̄n(·|s, a)

23

be the limit of this subsequence. Then, we have,

lim
l→∞

(
vπ

kijl

n (s)−Qπ
kijl

n (s, a)

)
= lim

l→∞

(
v
kijl
n (s)−

∑
s′∈S

p
kijl
n (s′|s, a)

[
cn(s, a, s′) + λvπ

kijl

n+1 (s′)

])
= vπ̄n(s)−

∑
s′∈S

p̄n(s′|s, a)
[
cn(s, a, s′) + λvπ̄n+1(s′)

]
≥ vπ̄n(s)− max

pn(·|s,a)∈Pan,s

(∑
s′∈S

pn(s′|s, a)
[
cn(s, a, s′) + λvπ̄n+1(s′)

])
= ε.

Then, there exists an integer L such that for l ≥ L,

ε/2 < vπ
kijl

n (s)−Qπ
kijl

n (s, a) = vπ
kijl

n (s)− max
pn(·|s,a)∈Pan,s

(∑
s′∈S

p
kijl
n (s′|s, a)

[
cn(s, a, s′) + λvπ

kijl

n+1 (s′)

])
.

Since m(k)→∞, we have that for large enough l, m(kijl) ≥ n. Then, applying Lemma 2.3.2

gives us that

ε/2 < v
kijl

,m(kijl
)

n (s) + λ
m(kijl

)+1−n c

1− λ

− max
pn(·|s,a)∈Pan,s

(∑
s′∈S

p
kijl
n (s′|s, a)

[
cn(s, a, s′) + λv

kijl
,m(kijl

)

n+1 (s′)

])
≤ λ

m(kijl
)+1−n c

1− λ
− λ1−nγ

kijl
,m(kijl

)
= λ1−n

(
λ
m(kijl

) c

1− λ
− γkijl ,m(kijl

)

)
.

But this contradicts the fact from Lemma 2.3.6 that both λ
m(kijl

) c
1−λ and γ

kijl
,m(kijl

)
converge

to zero as l→∞. Hence, our assumption is false and the limiting policy π̄ must be optimal.

We remark that so far we have only proven that vπ
k

converges subsequentially to the

optimal value function v∗. But from Lemma 2.3.4, we know that each component vπ
k

n (s) is

a nonincreasing sequence of nonnegative real numbers, and therefore must converge. This

combined with the subsequential convergence proves that lim
k→∞

vπ
k

n (s) = v∗n(s) for all s ∈ S

and n ∈ N.

24

Theorem 2.3.8 (Policy Convergence). For any ε > 0, there exists an iteration counter kε

such that ρ(πk, π∗k) < ε for some optimal policy π∗k, for all k ≥ kε. In fact, if the MDP

has a unique optimal policy π∗, then lim
k→∞

πk = π∗. Further, for every period n, there exists

an iteration counter Kn such that for all k ≥ Kn, actions πkm(s) are optimal for the robust

non-stationary MDP in all states s ∈ S and all periods m ≤ n.

Proof. We prove the first claim by contradiction. Suppose this is not true. Then, there

exists an ε > 0 and a subsequence πki of πk such that ρ(πki , π) > ε for all optimal policies

π, for all i ∈ N. Since the space of all policies is compact, the sequence πki has a convergent

subsequence πkij , whose limit is, say, π̄. Then, there exists an integer J such that ρ(πkij , π̄) <

ε for all j ≥ J . Further, as in the proof of Theorem 2.3.7, π̄ must be an optimal policy. This

leads to a contradiction. Hence, the first claim is true.

Further, suppose that π∗ is the unique optimal policy. Then, as shown above, for every

ε > 0, there exists an integer kε, such that ρ(πk, π∗) < ε for all k ≥ kε. This implies that

lim
k→∞

πk = π∗.

Now, for the third claim, we note that the result is trivially true if πk is optimal for some

k. When this is not the case, we first claim that given ε > 0 and any period n, there exists

an iteration counter Kn such that for all k ≥ Kn, |πkm(s)− πk∗m (s)| < ε, for all m ≤ n and for

all s ∈ S, for some optimal policy πk∗. Suppose not. Then, there exists a subsequence ki,

and for each i, a period mi ≤ n and state si ∈ S such that |πkimi(si) − π
∗
mi

(si)| ≥ ε for all i,

for all optimal policies π∗. But ki has a further subsequence kij such that πkij converges to

an optimal policy π̄ as in the proof of Theorem 2.3.8. This leads to a contradiction. Now,

fix 0 < ε < 1 and a period n, and consider any iteration k ≥ Kn. For any m ≤ n and

s ∈ S, we have, |πkm(s)− πk∗m (s)| < ε for some optimal action πk
∗
m (s). Then, since ε < 1 and

πkm(s), πk∗m (s) ∈ A = {1, 2, . . . , A}, we have πkm(s) = πk∗m (s). This proves that all actions up

to period n are optimal for policies πk with k ≥ Kn.

We comment that this type of subsequential convergence is the most one can obtain, in

general without exploiting any problem-specific features, in infinite-horizon nonstationary

25

sequential decision problems [37, 38].

In this discussion, we did not consider the question of how to solve the inner maximization

problems in (2.5) and (2.6) within Algorithm 1. These problems can be solved by following

standard procedures from robust MDPs, and in particular, this can be done efficiently when

the uncertainty sets Pan,s are convex. We refer the readers to [9, 28, 33] for detailed discussions

of this issue.

As we stated in Section 2.1, nonstationary MDPs are a special case of countable-state

stationary MDPs. The simple policy iteration algorithm for nonstationary MDPs in [22] was

extended to countable-state stationary MDPs in [30]. Along similar lines, the work in this

chapter is extended to robust countable-state stationary MDPs in the next chapter.

26

Chapter 3

APPROXIMATE POLICY ITERATION FOR ROBUST
COUNTABLE-STATE MARKOV DECISION PROCESSES

WITH BOUNDED COSTS

3.1 Introduction

Policy iteration for “nominal” (i.e., non-robust) MDPs starts with an initial guess policy. In

every iteration, the value of the current policy is computed and a new policy is obtained by

minimizing the Q-function of dynamic programming for each state. For finite-state, finite-

action MDPs, policy iteration finds an optimal policy in a finite number of iterations (Theo-

rem 6.4.2 in [35]). For countable-state MDPs, however, this method cannot be implemented

directly since it entails solving an infinite system of equations and searching for minima over

infinite sets. This issue was recently addressed for the nominal case via approximate versions

of policy iteration [22, 30].

In the case of robust MDPs as well, policy evaluation and policy improvement are rendered

unimplementable when the state-space is not finite. In fact, a practical method for solving

robust countable-state MDPs is not available in the literature, and we provide such an

algorithm in this chapter. An as-is implementation of robust policy iteration runs into issues

arising from three different sources. The first of these is due to the countable nature of the

state-space, analogous to challenges in the nominal case, and is resolved via state-truncation.

The algorithm includes only finitely many states in each iteration. This yields approximate

versions of both steps of policy iteration, which now comprise finite systems of equations. The

main idea behind this approach is that the expected cost for far-away states is small. Such a

property holds trivially in the nominal case. In the robust counterpart, this is ensured by a

natural assumption on the uncertainty sets, which states that the probability of transitioning

27

to states outside the truncated state-space shrinks uniformly as the size of the state-space is

increased.

The other issues are particular to the robust variant. The robust policy evaluation step

entails the solution of a non-linear implicit equation, which cannot be performed exactly in

general. This is addressed via successive approximation to compute an approximate value of

the current policy. Additionally, an “inner” maximization problem must be solved in each

successive approximation step to compute the worst-case value. While the exact value may

occasionally be found, the maximization needs to be performed numerically to some finite

accuracy in most cases. Numerical errors arising from this step are also incorporated into

our algorithm.

Thus, we present in this chapter an approximate policy iteration algorithm that can be

used in practice. We prove that the algorithm generates a sequence of policies whose value

functions converge monotonically to the optimal value function. The policies themselves

converge subsequentially to an optimal policy. We also provide examples of robust MDPs

which fall within our framework. Any robust MDP with interval uncertainty sets can be

solved via the proposed method. In fact, the inner problem can be solved analytically and

calculations within the algorithm are greatly simplified. We also consider robust MDPs

with bounded transitions, wherein the change in state in a single period is bounded above.

Finally, we discuss how our algorithm can be implemented on a robust equipment replacement

application that does not fit within these two classes of problems. The MDPs in this chapter

are infinite-horizon with stationary data and discounted costs. Immediate costs are bounded,

state-spaces are countable and action-spaces are finite. We henceforth omit these qualifiers

for brevity.

3.2 Problem formulation

Consider an infinite-horizon stationary MDP with a countable state-space S = {1, 2, 3, . . .}.

In any period, the decision-maker observes the current state s ∈ S and chooses an action a

from a finite set of possible actionsA = {1, 2, . . . , A}. We assume, for notational convenience,

28

that the set of actions is independent of the state s, but our analysis can easily be extended

to state-dependent finite action sets A(s). Once an action has been chosen, the system

transitions to a state s′ with probability p(s′|s, a), incurring a nonnegative cost c(s, a, s′).

The immediate costs are assumed to be uniformly bounded above by some constant c > 0.

Thus, 0 ≤ c(s, a, s′) ≤ c for all s, s′ ∈ S and a ∈ A. Further, the cost incurred in period t is

discounted by a factor λt, where λ ∈ (0, 1) is a constant.

A (deterministic stationary) policy σ is a rule which assigns a unique action to every

state. For a policy σ, let vσ(s) be the expected total discounted cost incurred over an infinite

horizon when the system is initially in state s. The decision-maker’s objective is to find a

policy which minimizes this cost for all possible initial states, and this is achieved by solving

the Bellman equations

v∗(s) = min
a∈A

Ep[c(s, a, s
′) + λv∗(s′)], s ∈ S. (3.1)

Here Ep[·] denotes the expectation with respect to the probability distribution p(·|s, a).

That is, Ep[u(s′)] =
∑
s′∈S

p(s′|s, a)u(s′) for any function u defined on S. The state-action

dependence of p is omitted since it is implied by context. An optimal policy is constructed

by choosing an action from the argmin set in (3.1) for each state.

In the above setup, the transition probabilities are treated as known model parameters,

and we call this model the “nominal” MDP. In practice, these probabilities may be estimated

from historical data. The resulting estimation errors are ignored. Since the choice of optimal

policy may be sensitive to these errors, robust MDPs try to mitigate their effect by assuming

that the transition probabilities are ambiguous and only known to lie in certain prescribed

uncertainty sets. More precisely, for each state-action pair (s, a), the probability mass func-

tion p(·|s, a) is assumed to lie in a set Pas . Here, Pas is a (known) subset ofM(S), the space

of all probability mass functions defined on S. For instance, Pas may consist of probability

distributions that are “close” to some statistically-estimated nominal distribution. In the ro-

bust formulation, the decision-maker follows a conservative approach and seeks to minimize

29

the worst-case expected total discounted cost. Under standard rectangularity assumptions

which stipulate that the transition probabilities be independent across periods, the optimal

value function for the robust MDP is obtained by solving the robust Bellman equations

v∗(s) = min
a∈A

(
sup
p∈Pas

Ep[c(s, a, s
′) + λv∗(s′)]

)
, s ∈ S. (3.2)

A robust optimal (stationary) policy is defined for each state by choosing an action from

the argmin set above. The maximization problem inside the square brackets is called the

inner probLem Detailed analytical treatments of robust MDPs are available in [9, 28, 33].

Observe that if all uncertainty sets are chosen to be singleton, containing only the nominal

distribution, equations (3.1) and (3.2) are identical, and the robust MDP reduces to the

nominal MDP. We further point out that solving the system of equations (3.2) amounts to

finding a value function that is simultaneously optimal for all states s. This is equivalent to

optimizing a weighted l1-norm (called the β-norm) of the value function, defined as ‖u‖β =∑
s∈S

β(s)|u(s)| for all u ∈ V . Here, β is a strictly positive function on S such that
∑
s∈S

β(s) <

∞, and V is the space of all bounded functions on S. In particular, β can be viewed as an

initial state distribution and the β-norm as the expected value of the worst-case expected

total discounted cost defined in Equation (3.2). Policy iteration is a standard method for

solving this problem but its implementation is not possible when the state-space is countable.

We describe the issues that arise, and our approach to resolving them, in the next section.

3.3 Challenges in designing policy iteration

A detailed description of the policy iteration algorithm for solving robust MDPs is given in

[28]. We outline below the two key steps of the simple version of policy iteration. The method

is initialized by choosing an arbitrary policy σ. Then, the first step is policy evaluation,

wherein the value vσ of policy σ is computed via the system of equations

vσ(s) = sup
p∈Pσs

Ep[c(s, σ(s), s′) + λvσ(s′)], s ∈ S. (3.3)

30

Here Pσs is short-hand for Pσ(s)
s . In particular, vσ is a fixed point of the robust evaluation

operator Lσ defined on V as

Lσ(u)(s) = sup
p∈Pσs

Ep[c(s, σ(s), s′) + λu(s′)], s ∈ S, for all u ∈ V.

The second step is simple policy improvement, wherein a state-action pair (s̄, ā) is chosen

as follows.

(s̄, ā) ∈ argmin
s∈S,a∈A

{
sup
p∈Pas

Ep[c(s, a, s
′) + λvσ(s′)]− vσ(s)

}
. (3.4)

For any state-action pair (s, a), the term inside the brackets in (3.4) gives the change in cost

when action a is chosen in state s instead of that prescribed by the policy σ. This term is

zero if a = σ(s), and takes a negative value if choosing action a in state s gives a lower total

cost. Then, by definition, (s̄, ā) is a state-action pair which gives the largest reduction in

total cost, and policy σ is updated by prescribing action ā in state s̄. This policy iteration

algorithm, while well-defined in principle, is not implementable for three main reasons that

we describe below.

Countable state-space: The first difficulty arises because S is countable. As such, (3.3)

calls for solving infinitely many equations. Similarly, solving (3.4) consists of searching for

a minimum over an infinite set. This issue arises in the nominal case as well, and was ad-

dressed in Ghate and Smith [22] for non-stationary finite-state MDPs, which can equivalently

be viewed as a special case of stationary countable-state MDPs. They developed an imple-

mentable and convergent policy iteration algorithm using finite-dimensional approximations.

A similar algorithm was also designed in the previous chapter for robust non-stationary finite-

state MDPs. The approach in Ghate and Smith was also generalized by Lee et al. in [30] to

solve nominal stationary countable-state MDPs with unbounded immediate costs. The key

idea was to use finite truncations of the state-space to render the policy evaluation and im-

provement steps implementable. We use a similar idea of state-truncation. In each iteration,

31

the algorithm includes only the first N states from S, where N itself is chosen adaptively.

Nonlinear evaluation operator: The second issue is particular to the robust MDP. In the

nominal case, Lσ is a linear operator, and the policy evaluation step in equation (3.3) reduces

to solving a finite system of linear equations once the state-space has been truncated. The

robust policy evaluation step, however, consists of solving a non-linear implicit equation; this

is not possible in general, even when the state-space is finite. We were able to overcome this

hurdle in the previous chapter because the policy evaluation equations in the non-stationary

case were not implicit owing to the time-staged structure of the probLem In the absence of

such structure here, we instead approximate the value function by performing a finite number

of iterations of successive approximation. This idea is similar to that used in modified policy

iteration [29, 35].

With these two modifications, we now need to solve the system of equations

vσ,N(s; 0) = 0, s ∈ SN , (3.5)

vσ,N(s; t) = sup
p∈Pσs

EpN [c(s, σ(s), s′) + λvσ,N(s′; t− 1)], s ∈ SN ; t = 1, 2, . . . , T. (3.6)

Here, SN = {1, 2, . . . , N} consists of the first N states from S, and T is some integer in

the set of natural numbers N. EpN denotes the “expectation” over the first N states, that

is, EpN [u(s′)] =
∑
s′≤N

p(s′|s, a)u(s′) for any function u(·) on S. The complementary sum∑
s′>N

p(s′|s, a)u(s′) is denoted by EpN [u(s′)]. Then, vσ,N(s;T) is an approximation to the true

value function vσ. We can also view vσ,N(s;T) as the value of a stationary policy σ for an

N -state, T -horizon robust MDP with stationary immediate costs and zero terminal costs.

We will call this an (N, T)-approximation to the original MDP.

Solution of the inner problem: Finally, there is one more challenge associated with

robust MDPs. The inner problem in (3.6) is itself a maximization problem, and while a

closed-form solution may occasionally be found, this problem must be solved numerically

32

in most cases. Moreover, the numerical error from this step must also be incorporated into

the algorithm. This issue arises even in the case of finite state-spaces, and Kaufman and

Schaefer addressed it in [29] by introducing an “inexact” modified policy iteration algorithm.

They solve the inner problem to some pre-defined accuracy, and include the error term in

their stopping condition. We use a similar idea here, but the issue is complicated by the

countable nature of the state-space. As more states are included in the truncated state-

space, the numerical error from this step must asymptotically vanish for the algorithm to

converge. More precisely, if the inner problem with N states is solved to some accuracy εN ,

we must have εN → 0 as N →∞. This, however, may not always be possible. Note that the

inner problem in our model is an infinite-dimensional optimization problem and numerical

techniques may fail to solve it to any given tolerance. This necessitates a careful selection of

uncertainty sets over which a linear function may be optimized to arbitrary accuracy. This

is discussed in more detail in Section 3.5, and natural examples of such sets are provided

in Section 3.6. For now, this final level of approximation leads to the following system of

equations, which our approximate policy iteration algorithm seeks to solve.

v̂σ,N(s; 0) = 0, s ∈ SN , (3.7)

v̂σ,N(s; t)
εN≈ sup

p∈Pσs
EpN [c(s, σ(s), s′) + λv̂σ,N(s′; t− 1)], s ∈ SN ; t = 1, 2, . . . , T. (3.8)

The notation
ε
≈ is used to denote an ε-approximation, that is, u

ε
≈ û ⇐⇒ |u − û| < ε. In

the event that the inner problem can be solved exactly, we choose εN to be zero for all N ,

which amounts to solving Equations (3.5)-(3.6).

These three levels of approximation address the issues that would arise in an “as-is”

implementation of standard robust policy iteration, and lead to an approximate policy iter-

ation algorithm, every step of which requires a finite amount of memory and computation.

Moreover, the state-truncation level N and the number of successive approximation steps

T are chosen adaptively via an iterative procedure, so that the action update in the ap-

proximate policy improvement step guarantees strict improvement in value in each iteration.

33

The adaptive procedure is designed such that this improvement is sufficient to ensure value

convergence to optimality. These properties of the algorithm and convergence results are

discussed in detail in Section 3.5, but we first present the algorithm itself in the next section.

3.4 Algorithm

The proposed approximate policy iteration method is described in Algorithm 2. It starts out

with an initial policy. In each iteration k = 1, 2, . . . , Step 2(a) initializes the number of states

N in the truncated state-space and the number of successive approximation steps T . Steps

2(b)-2(d) find a state-action pair which gives the largest approximate reduction in cost. If

this improvement is sufficient and condition (3.13) is satisfied, the variables N(k) and T (k)

are assigned values N and T respectively, the current policy is updated and the algorithm

proceeds to iteration k+1. If not, both N and T are incremented by one and Steps 2(b)-2(d)

are repeated. In this manner, the algorithm generates a sequence of policies which strictly

improve in value and their value functions converge to the optimal value function v∗.

Step 2(e) checks if the approximate cost-reduction is sufficiently negative so as to provide

an improvement in the true value function. This requires the calculation of a parameter

δ̄(s, a,N, T). It is a bound defined in Lemma 3.5.8 via a recursive expression, and it converges

to zero as N and T grow to infinity. Algorithm 3 gives a subroutine for computing this

expression. The bound δ̄ (and hence the subroutine) does not depend on the current policy,

and its computation does not need to be repeated in every iteration. Also, it may sometimes

be easier to compute an upper bound on δ̄ which also has the same convergence behavior. In

that case, it suffices to replace δ̄ with the said bound. An example of this appears in Section

3.6.2.

Note that policies σk−1 and σk only differ in state sk−1 and are identical in all other

states. In particular, if we set N < sk−1 in iteration k, the two policies coincide over SN .

Such an N did not get sufficient cost-reduction in iteration k − 1, and it will also fail to do

so in iteration k. Hence, it is sufficient to initialize N = sk−1 instead of N = 1. Moreover,

our algorithm follows a “diagonal” approach in which N and T are always equal to each

34

Algorithm 2 Approximate policy iteration for robust countable-state MDPs.

1: Initialize: Set iteration counter k = 1. Arbitrarily fix the initial policy σ1 to one that
prescribes the first action in A in every state. Set s0 = 1.

2: for iterations k = 1, 2, 3, . . ., do
(a) Set N = sk−1 = T , N(k) =∞, and T (k) =∞. Let SN = {1, 2, . . . , N}.

Approximate policy evaluation:

(b) Let Pks ≡ P
σk(s)
s . Compute the approximate value function vk,N(s;T) for all s ∈ SN

by performing T steps of successive approximation. That is,

vk,N(s; 0) = 0, s ∈ SN , (3.9)

vk,N(s; t)
εN≈ sup

p∈Pks
EpN [c(s, σk(s), s′) + λvk,N(s′; t+ 1)], s ∈ SN ; t = 1, 2, . . . , T. (3.10)

Approximate simple policy improvement:

(c) For s ∈ SN and a ∈ A, compute the approximate improvement γk,N(s, a;T) by
solving the following system of equations.

γk,N(s, a;T)
εN≈ sup

p∈Pas
EpN [c(s, a, s′) + λvk;N(s′;T)]− vk;N(s;T). (3.11)

(d) Find a state-action pair which minimizes the β-weighted approximate improvement
across all states in SN and actions in A. That is, let

(sk,N(T), ak,N(T)) ∈ argmin
s∈SN , a∈A

β(s)γk,N(s, a;T). (3.12)

(e) Compute δ̄(sk,N(T), ak,N(T), N, T) via Algorithm 3.
If

γk,N(sk,N(T), ak,N(T);T) < −δ̄(sk,N(T), ak,N(T), N, T), (3.13)

set N(k) = N , T (k) = T , (sk, ak) = (sk,N(T), ak,N(T)), and update policy σk by choosing
σk+1(sk) = ak, σk+1(s) = σk(s) for all s 6= sk;

else set N = N + 1, T = T + 1, and go to Step 2(b).
3: end for

other. This is a convenient choice which further implies that N(k) = T (k) in every iteration,

a property used in Lemma 3.5.16 to establish that both N(k) and T (k) diverge to infinity

as k increases. While the convergence of the algorithm relies on this divergence, it does not

35

Algorithm 3 Subroutine for computing δ̄(s̄, ā, N, T)

1: Input s̄, ā, N , T .
2: For all s ∈ SN and a ∈ A, compute

M̃N(s, a)
εN≈ sup

p∈Pas

∑
s′>N

p(s′|s, a), MN(s) = max
a∈A

M̃N(s, a).

3: Initialize BN(s, a; 0) = 0 for all s ∈ SN and a ∈ A. For t = 1, . . . , T , compute

BN(s; t) = λmax
a∈A

BN(s, a; t− 1) +
c(1− λt)

1− λ
MN(s), s ∈ SN ,

BN(s, a; t)
εN≈ sup

p∈Pas
EpN [BN(s′; t)], s ∈ SN , a ∈ A.

4: Compute

δ̄(s̄, ā, N, T) =
cλT

1− λ
+

c

1− λ
M̃N(s̄, ā) +BN(s̄;T) + λBN(s̄, ā;T) +

2λεN
1− λ

+
4cεN

(1− λ)2
.

explicitly use the equality of N(k) and T (k). In other words, any choice of these parameters

which ensures that Condition (3.13) is satisfied and N(k), T (k)→∞ as k →∞, would yield

an implementable convergent algorithm.

Next, we justify our claim from Section 3.3 that this algorithm can be used in practice.

The initial policy arbitrarily assigns the first action (1 ∈ A) to each state. Thus, it has a

finite representation even though it is an infinite-dimensional policy. Similarly, since a single

action is updated in every iteration, the stationary policy σk has at most k actions different

from 1 and also has a finite representation. As such, every policy can be stored on a computer

with finite memory. The approximate policy evaluation Step 2(b) now consists of solving

only finitely many equations, each of which contains finite sums, as opposed to the infinite

system in (3.3). Similarly, Step 2(d) in the approximate policy improvement step now entails

the search for a minimum over a finite set. Step 2(e) contains an “if” condition which may

seemingly never be satisfied, allowing the algorithm to get stuck in an infinite loop. However,

we show in Lemma 3.5.10 that if the current policy σk is not optimal, then the condition

36

in Step 2(e) is satisfied for some large enough N and T and the loop terminates finitely.

The uncertainty sets are chosen so that the inner maximization in Steps 2(c) and 2(d) can

be solved to accuracy εN in finite time. Therefore, each iteration of our algorithm requires

finite memory and a finite amount of computation, resolving the difficulty we would have

encountered in implementing the standard policy iteration algorithm described in Section

3.2. As such, this approximate version of simple policy iteration is implementable.

Finally, we remark that the algorithm is not simply solving to optimality a sequence

of finite-state MDPs with increasing state-spaces. We do employ a sequence of finite-state

approximations but our approach is more subtle. Values of the truncated MDPs are only

computed approximately, which ensures that the policy evaluation step can be performed

finitely. Moreover, the size of the approximation and the policy update-scheme are chosen

suitably so that monotonic value improvement in each iteration as well as asymptotic con-

vergence to optimality are guaranteed. The convergence results are discussed in the next

section.

3.5 Convergence results

Algorithm 2 generates a sequence of policies σk. Let vk denote the corresponding value

functions. While the algorithm does not compute vk explicitly, we prove, via a sequence of

lemmas, that these values improve in every iteration and must converge to the optimal value

function v∗ in the β-norm as k →∞. Before presenting the proofs, though, we discuss a few

subtle issues about the uncertainty sets Pas .

First, note that the main premise for using state-truncation as an approximation for

a countable-state MDP is that far-away states are less significant. Mathematically, this

means that for any state-action pair (s, a), the expected tail cost incurred from states that

are sufficiently far away from s, is small and shrinks to zero as more and more states are

included in the approximation. This is always true for nominal MDPs, since the expected

tail cost can be bounded above by c times the tail probability
∑
s′>N

p(s′|s, a), which vanishes

as N grows. For robust MDPs, however, this issue is non-trivial and and depends on the

37

choice of uncertainty sets. In this case, we need the worst-case expected tail cost to shrink

to zero when more states are included in the approximate MDP, and this property does not

always hold. For example, suppose Pas contains all pmfs which place an atomic mass at one

of the states. For simplicity, assume also that c(s, a, s′) ≥ 1 for all s, s′ ∈ S and a ∈ A.

Then, for any N , the worst-case expected tail cost sup
p∈Pas

∑
s′>N

p(s′|s, a)c(s, a, s′) is at least 1.

This implies that a finite-state approximation will never give an arbitrarily good estimate of

the total cost for the original MDP.

Such cases can be avoided by a careful choice of uncertainty sets. Intuitively, we need

the tail transition-probability to be small regardless of which distribution from Pas is chosen,

and this is guaranteed by Assumption 3.5.1 below.

Assumption 3.5.1. For each state-action pair (s, a) and N ∈ S, define the maximum tail

probability as

MN(s, a) = sup
p∈Pas

∑
s′>N

p(s′|s, a). (3.14)

Then, MN(s, a)→ 0 as N →∞.

In the language of probability theory, this is equivalent to stating that the set of pmfs Pas
is “tight”. By Prokhorov’s theorem [15], this further implies that Pas is weakly precompact.

That is, for any sequence pn ∈ Pas , there exists a subsequence prn ∈ Pas and a pmf p ∈M(S)

such that Eprn [u(s′)] → Ep[u(s′)] as n → ∞, for all functions u on S. Note that the limit

p does not necessarily lie in the set Pas . This property is used later in the proof of value

convergence of the algorithm.

The second issue arises from the inner maximization probLem Recall from Equation (3.6)

that for an (N, T)-approximation, the inner problem for a fixed state-action pair (s, a) is of

the form

ũ(s) = sup
p∈Pas

∑
s′≤N

p(s′|s, a)[c(s, a, s′) + λu(s′)]. (3.15)

38

The optimization variable is the probability mass function (pmf), the objective function is a

linear function of this variable, and the feasible region is the uncertainty set Pas . For finite-

state robust MDPs, this problem can easily be solved numerically under suitable choice of

uncertainty sets – closed convex sets, for example. In the countable-state case, however, this

is not straightforward since (3.15) becomes an infinite-dimensional optimization probLem

While an analytical solution may occasionally be available, numerical methods must be used

in general. As such, it may not even be possible to practically solve this problem to arbitrary

accuracy, which is essential for the implementability and convergence of the proposed policy

iteration algorithm. We observe that the objective function depends only on the first N

components of p. Thus, optimizing over Pas is equivalent to optimizing over its algebraic

projection onto the finite-dimensional space RN , effectively making it a finite-dimensional

optimization probLem Thus, in theory, solving the inner problem here is as easy as the

finite-state case. But this idea is not very useful in practice since it requires an algebraic

representation of the projection Pas onto its first N components. This may not be possible

for many common uncertainty sets, thereby calling for a more delicate handling of this issue.

We omit further details here, and just state that the uncertainty sets must be chosen so that

the inner problem can be solved to arbitrary accuracy. In Section 3.6, we provide examples

of problems where this can be achieved.

Now, we state and prove several lemmas, which help us establish the main convergence

results in Theorems 3.5.17 and 3.5.18. For ease of exposition, interdependence of the various

results and their contributions are summarized in Figure 3.1 and Table 3.1.

The first lemma gives a necessary and sufficient condition for a policy to be optimal, and

is simply a restatement of the fact that the robust Bellman equations must be satisfied at

optimality. For a given policy σ, vσ denotes its value function. For each state-action pair

(s, a), let γσ(s, a) be the improvement obtained by changing the policy in a single state s by

39

Assumption
3.5.1

Lemma
3.5.3

Lemma
3.5.4

Lemma
3.5.2

Corollary
3.5.5

Lemma
3.5.6

Lemma
3.5.7

Lemma
3.5.8

Lemma
3.5.10

Lemma
3.5.11

Corollary
3.5.9

Lemma
3.5.12

Corollary
3.5.13

Corollary
3.5.14

Lemma
3.5.15

Lemma
3.5.16

Theorems
3.5.17, 3.5.18

Figure 3.1: A schematic representation of the interdependence of results in Section 3.5.

replacing action σ(s) with a. Then,

γσ(s, a) = sup
p∈Pas

Ep[c(s, a, s
′) + λvσ(s′)]− vσ(s). (3.16)

Lemma 3.5.2. A policy σ is optimal if and only if γσ(s, a) ≥ 0 for all s ∈ S and a ∈ A.

Proof. For any state s,

vσ(s) = sup
p∈Pσs

Ep[c(s, σ(s), s′) + λvσ(s′)] ≥ min
a∈A

{
sup
p∈Pas

Ep[c(s, a, s
′) + λvσ(s′)]

}
. (3.17)

40

Description Results used
Assum 3.5.1 Tail probabilities vanish uniformly. —
Lem 3.5.2 Optimal policies satisfy Bellman equations. —
Lem 3.5.3 Error due to approximate solution of inner prob-

Lem
—

Lem 3.5.4 Error due to (N, T)-approximation of the MDP. —
Cor 3.5.5 Approximation bounds for true versus approximate

value functions.
Lem 3.5.3, 3.5.4

Lem 3.5.6 Uniform convergence of expectations. Assum 3.5.1
Lem 3.5.7 Policy-dependent bound δ on difference between

true and approximate improvement.
Cor 3.5.5

Lem 3.5.8 Existence and convergence of a policy-independent
bound δ̄ ≥ δ.

Assum 3.5.1,
Lem 3.5.6, 3.5.7

Cor 3.5.9 Convergence of approximate value of a policy to its
true value.

Cor 3.5.5, Lem 3.5.8

Lem 3.5.10 Finite termination of the ‘if’ loop in the algorithm. Lem 3.5.2, 3.5.8
Lem 3.5.11 Contraction property of the robust evaluation op-

erator.
—

Lem 3.5.12 Policy update by an improving state-action pair
gives a better policy.

Lem 3.5.12

Cor 3.5.13 Policies generated by the algorithm are nonincreas-
ing in value.

Lem 3.5.11, 3.5.12

Cor 3.5.14 The algorithm never repeats a non-optimal policy. Cor 3.5.13
Lem 3.5.15 Weighted improvement for (sk, ak) asymptotically

vanishes.
Cor 3.5.14

Lem 3.5.16 The number of states included N(k) and the num-
ber of successive approximation steps T (k) diverge
to infinity.

Cor 3.5.14

Theorems
3.5.17 &
3.5.18

Policies generated by the algorithm converge in
value to optimal; policies converge subsequentially
to an optimal policy.

Assum 3.5.1,
Lem 3.5.2, 3.5.8,
3.5.12, 3.5.15,
3.5.16, Cor 3.5.14

Table 3.1: A summary of contribution and interdependence of the results in Section 3.5.

First suppose that γσ(s, a) ≥ 0 for all s ∈ S, a ∈ A. Then, by definition of γσ(·, ·),

vσ(s) ≤ sup
p∈Pas

Ep[c(s, a, s
′) + λvσ(s′)] for all s ∈ S, a ∈ A

=⇒ vσ(s) ≤ min
a∈A

{
sup
p∈Pas

Ep[c(s, a, s
′) + λvσ(s′)]

}
for all s ∈ S.

41

This combined with (3.17) implies that

vσ(s) = min
a∈A

{
sup
p∈Pas

Ep[c(s, a, s
′) + λvσ(s′)]

}
for all s ∈ S.

Thus, vσ satisfies the robust Bellman equations and must be the optimal value function.

Hence, the policy σ is optimal.

Conversely, suppose that policy σ is optimal. Then,

vσ(s) = min
a∈A

{
sup
p∈Pas

Ep[c(s, a, s
′) + λvσ(s′)]

}
for all s ∈ S

≤ sup
p∈Pas

Ep[c(s, a, s
′) + λvσ(s′)] for all s ∈ S, a ∈ A

=⇒ 0 ≤ γσ(s, a) for all s ∈ S, a ∈ A.

This completes the proof.

We noted in Section 3.3 that it may not be possible to solve the inner maximization

problem in Equation (3.6) exactly. As such, for any N and T , the algorithm solves the inner

problem to a pre-defined accuracy εN in each step of successive approximation. The next

lemma computes the total error accumulated as a result.

Lemma 3.5.3. For fixed N and T , and t = 1, . . . , T , let vσ,N(·, t) be obtained from Equations

(3.5)-(3.6); and let v̂σ,N(·, t) be obtained from Equations (3.7)-(3.8). Then,

|vσ,N(s, t)− v̂σ,N(s, t)| < εN
1− λt

1− λ
, for all s ∈ SN , t = 1, 2, . . . , T. (3.18)

Proof. Recall that vσ,N(·, t) is the value function for the (N, T)-approximation when the

inner problem in Equation (3.6) is solved exactly. Similarly, v̂σ,N(·, t) is the value function

obtained when the inner problems are solved to accuracy εN as in Equation (3.8). We will

prove the result by induction on t = 0, 1, . . . , T .

We introduce an intermediate function ṽσ,N(s; t) obtained by solving (3.8) exactly. That

42

is,

ṽσ,N(s; t) = sup
p∈Pσs

EpN [c(s, σ(s), s′) + λv̂σ,N(s′; t− 1)], s ∈ SN , t = 1, 2, . . . , T. (3.19)

Thus, v̂σ,N(s; t)
εN≈ ṽσ,N(s; t) for all states s ∈ SN and for all t = 1, . . . , T .

Since vσ,N(s; 0) = 0 = v̂σ,N(s; 0) for all s ∈ SN , it follows from Equation (3.19) that

ṽσ,N(s; 1) = sup
p∈Pσs

EpN [c(s, σ(s), s′) + λv̂σ,N(s′; 0)]

= sup
p∈Pσs

EpN [c(s, σ(s), s′) + λvσ,N(s′; 0)] = v̂σ,N(s; 1).

Therefore,

|v̂σ,N(s; 1)− vσ,N(s; 1)| ≤ |v̂σ,N(s; 1)− ṽσ,N(s; 1)|+ |ṽσ,N(s; 1)− vσ,N(s; 1)| < 0 + εN = εN ∀s ∈ SN .

So the result holds for t = 1. Now, suppose the result is true for some t < T and we will

prove it for t+ 1. Once again, for any s ∈ SN ,

ṽσ,N(s; t+ 1) = sup
p∈Pσs

EpN [c(s, σ(s), s′) + λv̂σ,N(s; t)]

≤ sup
p∈Pσs

EpN

[
c(s, σ(s), s′) + λ

(
vσ,N(s′; t) + (1− λt) εN

1− λ

)]
≤ sup

p∈Pσs
EpN [c(s, σ(s), s′) + λvσ,N(s′; t)] + (λ− λt+1)

εN
1− λ

= vσ,N(s; t+ 1) + (λ− λt+1)
εN

1− λ
=⇒ v̂σ,N(s; t+ 1) ≤ ṽσ,N(s; t+ 1) + εN

≤ vσ,N(s; t+ 1) + (λ− λt+1)
εN

1− λ
+ εN = vσ,N(s; t+ 1) + (1− λt+1)

εN
1− λ

.

43

Similarly,

vσ,N(s; t+ 1) = sup
p∈Pσs

EpN [c(s, σ(s), s′) + λvσ,N(s′; t)]

≤ sup
p∈Pσs

EpN

[
c(s, σ(s), s′) + λ

(
v̂σ,N(s′; t) + (1− λt) εN

1− λ

)]
≤ sup

p∈Pσs
EpN [c(s, σ(s), s′) + λv̂σ,N(s′; t)] + (λ− λt+1)

εN
1− λ

= ṽσ,N(s; t+ 1) + (λ− λt+1)
εN

1− λ
≤ v̂σ,N(s; t+ 1) + εN + (λ− λt+1)

εN
1− λ

= v̂σ,N(s; t+ 1) + (1− λt+1)
εN

1− λ
.

Thus, |vσ,N(s; t) − v̂σ,N(s; t)| < εN(1 − λt)/(1 − λ) for all t = 1, . . . , T . This completes the

proof.

Even when the inner problem can be solved exactly, the algorithm never computes the

true value vσ of policy σ. Instead, it computes an (N, T)-approximation to vσ via equations

(3.5)-(3.6). Our next lemma provides bounds on the quality of this approximation.

Lemma 3.5.4. Let σ be a fixed policy with value vσ. For fixed N and T , let vσ,N(·;T) be

its approximate value function obtained via Equations (3.5)-(3.6). For all states s ∈ SN , we

have,

vσ,N(s;T) ≤ vσ(s) ≤ vσ,N(s;T) +
cλt

1− λ
+ EN(s;σ, T), (3.20)

where EN(s;σ, 0) = 0 and for t = 1, 2, . . . , T ,

EN(s;σ, t) = λ sup
p∈Pσs

EpN [EN(s′;σ, t− 1)] +
c(1− λt)

1− λ
MN(s, σ(s)). (3.21)

Proof. We will prove the result in two steps by introducing an intermediate approximation

to the value function. Let vσ(·;T) be the approximate value of a policy σ obtained through

T steps of successive approximation, starting with an initial guess 0. Note that vσ(·;T) is

44

defined for all states in S. So,

vσ(s; 0) = 0, s ∈ S (3.22)

vσ(s; t) = sup
p∈Pσs

Ep[c(s, σ(s), s′) + λvσ(s′; t− 1)], s ∈ S; t = 1, . . . , T. (3.23)

We first obtain a relationship between vσ(·;T) and vσ(·), using induction on t = 0, 1, . . . , T .

For any state s ∈ S, the true value function is non-negative and bounded above by c/(1−λ),

that is, 0 ≤ vσ(s) ≤ c/(1− λ). This implies that vσ(s; 0) ≤ vσ(s) ≤ vσ(s; 0) + c/(1− λ) for

all s ∈ S. Now suppose for some t < T , we have,

vσ(s′; t) ≤ vσ(s′) ≤ vσ(s′; t) +
cλt

1− λ
, ∀ s′ ∈ S.

We will show that the result holds for t+ 1 as well. Fix a state s ∈ S. Multiplying the above

inequality by λ and adding c(s, σ(s), s′) gives

c(s, σ(s), s′) + λvσ(s′; t) ≤ c(s, σ(s), s′) + λvσ(s′) ≤ c(s, σ(s), s′) + λvσ(s′; t) +
cλt+1

1− λ
, ∀ s′ ∈ S.

Further multiplying the above with any p(·|s, σ(s)) ∈ Pσs and summing over all s′ ∈ S,

we have

Ep[c(s, σ(s), s′) + λvσ(s′; t)] ≤ Ep[c(s, σ(s), s′) + λvσ(s′)]

≤ Ep

[
c(s, σ(s), s′) + λvσ(s′; t) +

cλt+1

1− λ

]
= Ep[c(s, σ(s), s′) + λvσ(s′; t)] +

cλt+1

1− λ
.

Finally, taking suprema over Pσs gives

vσ(s; t+ 1) ≤ vσ(s) ≤ vσ(s; t+ 1) +
cλt+1

1− λ
∀ s ∈ S.

45

Thus, we have for all t = 1, . . . , T and for all s ∈ S,

vσ(s; t) ≤ vσ(s) ≤ vσ(s; t) +
cλt

1− λ
. (3.24)

Next, we compute the error introduced by state-truncation. For this, we obtain a rela-

tionship between vσ,N(·;T) defined in Equations (3.5)-(3.6), and vσ(·;T) defined in Equations

(3.22)-(3.23). We claim that for t = 0, 1, . . . , T , we have

vσ,N(s; t) ≤ vσ(s; t) ≤ vσ,N(s; t) + EN(s;σ, t), (3.25)

where EN(s;σ, t) is defined in Equation (3.21). Since EN(s;σ, 0) = 0 and vσ,N(s; 0) = 0 =

vσ(·; 0) for all s ∈ SN , the result is true for t = 0. We complete the proof by induction on

t = 0, 1, . . . , T . Observe that

vσ(s; t) ≤ c(1 + λ+ . . .+ λt−1) =
c

1− λ
(1− λt) ∀ s ∈ S, t = 1, 2, . . . , T. (3.26)

Suppose our claim is true for some t < T . Then, for t+ 1, for a fixed state s ∈ SN , we have

vσ,N(s; t+ 1) = sup
p∈Pσs

EpN [c(s, σ(s), s′) + λvσ,N(s′; t)]

≤ sup
p∈Pσs

EpN [c(s, σ(s), s′) + λvσ(s′; t)] (by induction hypothesis)

≤ sup
p∈Pσs

Ep[c(s, σ(s), s′) + λvσ(s′; t)] = vσ(s; t+ 1).

46

Conversely,

vσ(s; t+ 1) ≤ sup
p∈Pσs

EpN [c(s, σ(s), s′) + λvσ(s′; t)] + sup
p∈Pσs

EpN [c(s, σ(s), s′) + λvσ(s′; t)]

≤ sup
p∈Pσs

EpN [c(s, σ(s), s′) + λ(vσ,N(s′; t) + EN(s′;σ, t))]

+ sup
p∈Pσs

EpN

[
c+

cλ

1− λ
(1− λt)

]
≤ sup

p∈Pσs
EpN [c(s, σ(s), s′) + λvσ,N(s′; t)] + λ sup

p∈Pσs
EpN [EN(s′;σ, t)]

+ c
(1− λt+1

1− λ

)
MN(s, σ(s))

= vσ,N(s; t+ 1) + λ sup
p(·|s,σ(s))
∈Pσs

EpN [EN(s′;σ, t)] + c

(
1− λt+1

1− λ

)
MN(s, σ(s))

= vσ,N(s; t+ 1) + EN(s;σ, t+ 1),

where EN(s;σ, t + 1) is defined in Equation (3.21). Thus, the claim is true for all t =

0, 1, . . . , T .

Finally, combining Equations (3.24) and (3.25) and plugging in t = T completes the

proof.

The algorithm explicitly computes the approximate value function v̂σ,N(·;T), and the next

corollary combines Lemmas 3.5.3 and 3.5.4 to bound the deviation of this approximation from

the true value function vσ(·).

Corollary 3.5.5.

v̂σ,N(s;T)− 1− λT

1− λ
εN ≤ vσ(s) ≤ v̂σ,N(s;T) +

cλT

1− λ
+ EN(s;σ, T) + εN

1− λT

1− λ
, ∀ s ∈ SN .

Proof. The result follows from Equations (3.18) and (3.20).

The algorithm uses state truncation, successive approximation and approximate solution

of inner problems to explicitly compute an approximate value function. A desirable property

47

in any good approximation is that it asymptotically recover the true value. Towards this

goal, the following results will show that the error terms obtained in Corollary 3.5.5 vanish

as N and T are made arbitrarily large. But we first present a result that establishes uniform

convergence of certain expectations. This will be utilized in subsequent proofs.

Suppose uN(·) is a bounded sequence of functions that converges pointwise to zero on

S as n → ∞. Then, for any pmf p ∈ M(S), the expected value Ep[uN(s′)] → 0 by the

Dominated Convergence Theorem. However, the approximation bounds obtained in the

previous lemmas contain terms of the form sup
p∈Pas

Ep[uN(s′)]. It is not obvious whether these

worst-case expected values vanish as well. The next lemma establishes that they do, provided

the uncertainty sets satisfy Assumption 3.5.1.

Lemma 3.5.6. For all s ∈ S, let uN(s) be a non-negative sequence that converges to 0 as

N →∞, and is uniformly bounded over S by some constant U . For all N ∈ N, define

aN = sup
p∈P

Ep[uN(s′)],

where P satisfies Assumption 3.5.1. Then, aN converges to 0 as N → ∞ and is uniformly

bounded above by U .

Proof. It is easy to see that 0 ≤ aN ≤ U for all N .

Further, for any n ∈ N, we can write

aN = sup
p∈P

(
Epn [uN(s′]) + Epn [uN(s′)]

)
≤ sup

p∈P
Epn [uN(s′]) + sup

p∈P
Epn [uN(s′)]

≤ sup
p∈P

Epn [uN(s′]) + U sup
p∈P

Epn [1].

Given ε > 0, choose n so that sup
p∈P

Epn [1] = sup
p∈P

∑
s′>n

p(s′) < ε/(2U). Such an n exists since P

satisfies Assumption 3.5.1.

Further, note that uN(s) vanishes uniformly over s ∈ {1, 2, . . . , n}, that is, we can find

48

N0 ∈ N such that for N ≥ N0, uN(s) < ε/2 for all s ∈ {1, 2, . . . , n}. Then, for N ≥ N0, we

have

aN ≤
ε

2
sup
p∈P

Epn [1] + U
ε

2U
≤ ε.

Since ε > 0 was arbitrary, this completes the proof.

The policy improvement step uses the value of the current policy to choose a state-action

pair which gives the maximum improvement. Since the true value vσ is not available, we

cannot compute the true improvement either. Instead, the algorithm computes an approxi-

mation γσ,N(·, ·;T) defined as

γσ,N(s, a;T)
εN≈ sup

p∈Pas
EpN [c(s, a, s′) + λv̂σ,N(s′;T)]− v̂σ,N(s;T), ∀ s ∈ SN , a ∈ A. (3.27)

The next lemma establishes a relation between the approximate improvement and the true

improvement defined in Equation (3.16).

Lemma 3.5.7. For a fixed policy σ and for any state s ∈ SN , action a ∈ A,

∣∣γσ,N(s, a;T)− γσ(s, a)
∣∣ ≤ δ(s, a, σ,N, T), (3.28)

where

δ(s, a, σ,N, T) =
c

1− λ
(
λT + 2εN +MN(s, a)

)
+ EN(s;σ, T) + λ sup

p∈Pas
EpN [EN(s′;σ, T)].

(3.29)

49

Proof. For any state s ∈ SN and action a ∈ A,

γσ(s, a) = sup
p∈Pas

Ep[c(s, a, s
′) + λvσ(s′)]− vσ(s)

≤ sup
p∈Pas

EpN [c(s, a, s′) + λvσ(s′)] + sup
p∈Pas

EpN [c(s, a, s′) + λvσ(s′)]− vσ(s)

≤ sup
p∈Pas

EpN

[
c(s, a, s′) + λ

(
v̂σ,N(s′;T) +

cλT

1− λ
+ εN

1− λT

1− λ
+ EN(s′;σ, T)

)]
+
(
c+

λc

1− λ

)
MN(s, a)− v̂σ,N(s;T) + εN

1− λT

1− λ
(by Corollary 3.5.5)

≤ sup
p∈Pas

EpN [c(s, a, s′) + λv̂σ,N(s;T)]− v̂σ,N(s;T)

+
cλT+1

1− λ
+ λεN

1− λT

1− λ
+ λ sup

p∈Pas
EpN [EN(s′;σ, T)] +

c

1− λ
MN(s, a) + εN

1− λT

1− λ

≤ γσ,N(s, a;T) + εN

+
cλT+1

1− λ
+ (1 + λ)εN

1− λT

1− λ
+ λ sup

p∈Pas
EpN [EN(s′;σ, T)] +

c

1− λ
MN(s, a)

≤ γσ,N(s, a;T) +
cλT+1

1− λ
+ 2εN

1− λT+1

1− λ
+ λ sup

p∈Pas
EpN [EN(s′;σ, T)] +

c

1− λ
MN(s, a).

50

Conversely, for any state s ∈ SN ,

γσ,N(s, a;T)
εN≈ sup

p∈Pas
EpN [c(s, a, s′) + λv̂σ,N(s′;T)]− v̂σ,N(s;T)

≤ εN + sup
p∈Pas

EpN [c(s, a, s′) + λv̂σ,N(s′;T)]− v̂σ,N(s;T)

≤ εN + sup
p∈Pas

EpN

[
c(s, a, s′) + λvσ(s′) + εN

1− λT

1− λ

]
− vσ(s) +

cλT

1− λ
+ EN(s;σ, T) + εN

1− λT

1− λ
(by Corollary 3.5.5)

≤ εN + sup
p∈Pas

Ep

[
c(s, a, s′) + λvσ(s′) + εN

1− λT

1− λ

]
− vσ(s) +

cλT

1− λ
+ EN(s;σ, T) + εN

1− λT

1− λ
≤ sup

p∈Pas
Ep[c(s, a, s

′) + λvσ(s′)]− vσ(s)

+ εN

(
1 + λ

1− λT

1− λ
+

1− λT

1− λ

)
+

cλT

1− λ
+ EN(s;σ, T)

= γσ(s, a) + 2εN
1− λT+1

1− λ
+

cλT

1− λ
+ EN(s;σ, T).

Thus, for all s ∈ SN , a ∈ A, we have,

∣∣γk,N(s, a;T)− γk(s, a)
∣∣ ≤ c

1− λ
(
λT + 2εN +MN(s, a)

)
+ EN(s;σ, T) + λ sup

p∈Pas
EpN [EN(s′;σ, T)]

= δ(s, a, σ,N, T).

This completes the proof.

The bound δ in the previous lemma allows us to choose a suitable state-action pair in

the policy update step so that the true value function improves. For the algorithm to be

convergent, however, we need an upper bound on δ which is policy-independent and vanishes

asymptotically as N and T grow. The existence of such a bound δ̄ is established in the next

lemma. It is obtained via a recursive expression, and a subroutine for computing it is

51

provided in Algorithm 3. In some cases, it may be easier to compute an upper bound on δ̄

which demonstrates the same convergence behavior. We remark that replacing δ̄ with such

a bound works just as well in the algorithm. An example of this appears in Section 3.6.2.

Lemma 3.5.8. There exists a policy-independent bound δ̄(s, a,N, T) such that δ(s, a, σ,N, T) ≤

δ̄(s, a,N, T) for all s ≤ N , a ∈ A and policies σ, and δ̄(s, a,N, T)→ 0 as N, T →∞.

Proof. For every N ∈ S and state s ∈ SN , let M̃N(s, a)
εN≈ MN(s, a) and let MN(s) =

max
a∈A

M̃N(s, a). Since there are finitely many actions in A, it follows from Assumption 3.5.1

and by choice of εN that MN(s) also vanishes as N →∞.

Further, let BN(s; 0) = 0 = BN(s, a; 0) = 0. For t = 1, . . . , T , define

BN(s; t) = λmax
a∈A

BN(s, a; t− 1) +
c(1− λt)

1− λ
MN(s), ∀ s ∈ SN ,

BN(s, a; t)
εN≈ sup

p∈Pas
EpN [BN(s′, t)], ∀ s ∈ SN , a ∈ A.

Recall the definition of error EN(·, ·; t) from Equation (3.21). For a fixed policy σ, state

s ∈ SN and t = 1, . . . , T , we show that EN(s;σ, t) ≤ BN(s; t)+(λ+c(1+. . .+λt−1))εN/(1−λ).

For t = 1, we have

EN(s;σ, 1) = cMN(s, σ(s)) ≤ cMN(s) + cεN = BN(s, 1) + cεN ≤ BN(s, 1) +
λ+ c

1− λ
εN .

52

Suppose the relation holds for some t < T . Then, for t+ 1, we have

EN(s;σ, t+ 1) = λ sup
p∈Pσs

EpN [EN(s′;σ, t)] +
c(1− λt+1)

1− λ
MN(s, σ(s)) (by definition of EN)

≤ λ sup
p∈Pσs

EpN

[
BN(s′; t) +

λ+ c(1 + . . .+ λt−1)

1− λ
εN

]
+
c(1− λt+1)

1− λ
(MN(s) + εN)

≤ λ sup
p∈Pσs

EpN [BN(s′; t)] +
λ2 + c(λ+ . . .+ λt)

1− λ
εN +

c(1− λt+1)

1− λ
(MN(s) + εN)

≤ λBN(s, σ(s); t) + λεN +
c(1− λt+1)

1− λ
MN(s) +

λ2 + c(λ+ . . .+ λt)

1− λ
εN +

c

1− λ
εN

≤ λmax
a∈A

BN(s, a; t) +
c(1− λt+1)

1− λ
MN(s) + εN

(
λ+

λ2 + c(λ+ . . .+ λt)

1− λ
+

c

1− λ

)
= BN(s; 2) + εN

(λ+ c(1 + λ+ . . .+ λt)

1− λ

)
.

Thus, for any t,

EN(s;σ, t) ≤ BN(s; t) +
(λ+ c(1 + λ+ . . .+ λt)

1− λ

)
εN .

Also,

λ sup
p∈Pas

EpN [EN(s′;σ, T)] ≤ λ sup
p∈Pas

EpN [BN(s′;T)] +
(λ2 + c(λ+ . . .+ λT+1)

1− λ

)
εN

≤ λBN(s, a;T) + λεN +
(λ2 + c(λ+ . . .+ λT+1)

1− λ

)
εN

= λBN(s, a;T) +
(λ+ c(λ+ . . .+ λT+1)

1− λ

)
εN .

53

Therefore,

δ(s, a, σ,N, T) =
c

1− λ
(
λT + 2εN +MN(s, a)

)
+ EN(s;σ, T) + λ sup

p∈Pas
EpN [EN(s′;σ, T)]

≤ c

1− λ

(
λT + 3εN + M̃N(s, a)

)
+BN(s;T) +

(λ+ c(1 + λ+ . . .+ λT)

1− λ

)
εN

+ λBN(s, a;T) +
(λ+ c(λ+ . . .+ λT+1)

1− λ

)
εN

=
cλT

1− λ
+

c

1− λ
M̃N(s, a) +BN(s;T) + λBN(s, a;T) +

2λεN
1− λ

+
cεN

1− λ

(
3 + 1 + . . .+ λT + λ+ . . .+ λT+1

)
≤ cλT

1− λ
+

c

1− λ
M̃N(s, a) +BN(s;T) + λBN(s, a;T) +

2λεN
1− λ

+
4cεN

(1− λ)2

, δ̄(s, a;N, T).

Now, we show that δ̄(s, a;N, T) → 0 as N, T → ∞. In order to prove this, it suffices to

show that BN(s;T) vanishes asymptotically. Note that this would imply that BN(s, a;T)

also converges to zero.

Fix s ∈ S. For any N ≥ s and T , we have

BN(s;T) ≤ c

1− λ
MN(s) + λεN + λmax

a∈A
sup
p∈Pas

EpN [BN(s1, T − 1)]

≤ c

1− λ
MN(s) + λεN

+ λmax
a∈A

sup
p∈Pas

EpN

[c

1− λ
MN(s1) + λεN + λmax

a1∈A
sup

p1∈Pa1
s1

Ep1
N

[BN(s2, T − 2)]
]

≤ c

1− λ
MN(s) +

cλ

1− λ
max
a∈A

sup
p∈Pas

EpN [MN(s1)] + (λ+ λ2)εN

+ λ2 max
a∈A

sup
p∈Pas

EpN

[
max
a1∈A

sup
p1∈Pa1

s1

Ep1
N

[BN(s2, T − 2)]
]
.

Here, we have used the fact that sup
x

(f(x) + g(x)) ≤ sup
x
f(x) + sup

x
g(x) for any functions f

and g.

54

Recursively repeating this argument, we get

BN(s;T) ≤ (λ+ . . .+ λT−1)εN

+
c

1− λ

{
MN(s) + λmax

a∈A
sup
p∈Pas

EpN [MN(s1)] + . . .

+ λT−1 max
a∈A

sup
p∈Pas

EpN

[
max
a1∈A

sup
p1∈Pa1

s1

[
. . .
[

max
a1∈A

sup
p2∈P

aT−2
sT−2

EpT−2
N

[BN(sT−1, 1)]
]]]}

=
λ− λT

1− λ
εN +

c

1− λ
MN(s) +

cλ

1− λ
max
a∈A

sup
p∈Pas

EpN [MN(s1)] + . . .

+
cλT−1

1− λ
max
a∈A

sup
p∈Pas

EpN

[
max
a1∈A

sup
p1∈Pa1

s1

[
. . .
[

max
a1∈A

sup
p2∈P

aT−2
sT−2

EpT−2
N

[BN(sT−1, 1)]
]]]

.

By choice of εN and by Assumption 3.5.1 respectively, the first two terms in the above

expression converge to 0 as N → ∞. Further, MN(s) is a nonnegative sequence which

vanishes asymptotically and is bounded uniformly over S by 1. Thus, by Lemma 3.5.6, the

third term in the above expression also converges to zero as N → ∞, and is bounded by

1. Repeatedly applying this argument gives us that for a fixed T , each term vanishes as N

grows. However, we still need to establish the convergence of the double sequence as both

N and T grow simultaneously.

Observe that the t+1-st term is bounded above by cλt−1/(1 − λ). For any T0 ∈ N and

55

T > T0, we have

BN(s;T) ≤ λ− λT

1− λ
εN

+
c

1− λ

{
MN(s) + λmax

a∈A
sup
p∈Pas

EpN [MN(s1)] + . . .

+ λT0−1 max
a∈A

sup
p∈Pas

EpN

[
max
a1∈A

sup
p1∈Pa1

s1

[
. . .
[

max
a1∈A

sup
pT0−2∈P

aT0−2
sT0−2

E
p
T0−2
N

[BN(sT0−1, 1)]
]]]}

+
c

1− λ
{λT0 + . . .+ λT−1}

≤ λ− λT

1− λ
εN

+
c

1− λ

{
MN(s) + λmax

a∈A
sup
p∈Pas

EpN [MN(s1)] + . . .

+ λT0−1 max
a∈A

sup
p∈Pas

EpN

[
max
a1∈A

sup
p1∈Pa1

s1

[
. . .
[

max
a1∈A

sup
pT0−2∈P

aT0−2
sT0−2

E
p
T0−2
N

[BN(sT0−1, 1)]
]]]}

+
cλT0

(1− λ)2
.

We will show that this upper bound on the error term converges to 0 as N, T →∞.

Given η > 0, choose T0 such that λT0 < η. Also, let N0 ∈ N be such that for N > N0,

εN < η, and each of the summations inside the brackets is also less than η. (T0 is a fixed

number given η.) Then, for N > N0 and T > T0,

BN(s;T) ≤ η

1− λ
+

c

1− λ

{
η + λη + . . .+ λT0−1η

}
+

c η

(1− λ)2
≤ 2c+ 1

(1− λ)2
η.

Since η > 0 was arbitrary, we conclude that the error term can be made arbitrarily small for

sufficiently large N and T . Thus, BN(s;T)→ 0 as N, T →∞.

This completes the proof.

In Corollary 3.5.5, we found the difference between the true value of a policy and its

approximation that the algorithm computes. Our next corollary states that as N and T are

56

increased, that is, more states are included and more iterations of successive approximation

are performed in the policy evaluation step, the algorithm asymptotically recovers the true

value of the policy. While this result is not used later, it is of independent interest as it

establishes that v̂σ,N(·, T) actually estimates the true value function.

Corollary 3.5.9. For any policy σ and state s ∈ S, v̂σ,N(s;T)→ vσ(s) as N, T →∞.

Proof. As shown in the proof of Lemma 3.5.8, we have

EN(s;σ, T) ≤ BN(s;T) +
λ+ c(1 + . . .+ λT)

1− λ
εN .

Since the right hand of the above inequality converges to zero, it follows that so does

EN(s;σ, T). This, combined with Corollary 3.5.5, completes the proof.

In Section 3.4, we noted that each step of the algorithm requires finite computation and

memory. At first glance, however, it appears that Step 2 of the algorithm may get caught

in an infinite loop if condition (3.13) is not satisfied for any N and T . Our next lemma

proves that this loop must terminate if the current policy is not optimal. For notational

convenience, we will denote γσ
k
(·, ·) and γσ

k;N(·, ·) by γk(·, ·) and γk;N(·, ·) respectively.

Lemma 3.5.10. In iteration k, Step 2 of the algorithm terminates finitely if and only if the

policy σk is not optimal.

Proof. Suppose a policy σk is not optimal. Then, by Lemma 3.5.2, there is a state-action

pair (s̄, ā) for which −ε = γk(s̄, ā) < 0. Since δ̄(s̄, ā, N, T) → 0 as N, T → ∞, there exist

integers N1 ≥ s̄ and T1 such that for all T ≥ T1 and N ≥ N1, we have δ̄(s̄, ā, N, T) < ε/2.

This implies that

γk,N(s̄, ā;T) ≤ γk(s̄, ā) + δ̄(s̄, ā, N, T) = −ε+ δ̄(s̄, ā, N, T) < −ε+
ε

2
= − ε

2
. (3.30)

57

Now, for any N and T , and any state-action pair (s, a) with s ≤ N , we have that

∣∣∣γk,N(s, a;T)
∣∣∣ ≤ ∣∣∣(sup

p∈Pas
EpN [c(s, a, s′) + λvk;N(s′;T)]

)
− vk;N(s;T)

∣∣∣+ εN

≤
∣∣∣ sup
p∈Pas

EpN [c(s, a, s′) + λvk;N(s′;T)]
∣∣∣+
∣∣vk;N(s;T)

∣∣+ εN

≤ c+
cλ

1− λ
+

c

1− λ
+ εN =

2c

1− λ
+ εN

=⇒ −γk,N(s, a;T) ≤ 2c

1− λ
+ εN . (3.31)

Since
∑
s∈S

β(s) <∞, it follows that β(s)→ 0 as s→∞. Also, εN approaches zero as N →∞.

Thus, there exists an s1 ≥ s̄ and an integer N2 ≥ s̄ such that for all s ≥ s1 and N ≥ N2,

β(s)

(
2c

1− λ
+ εN

)
<
ε

2
β(s̄). (3.32)

Then, it follows from Equations (3.30), (3.31) and (3.32) that for all N ≥ max{s1, N1, N2},

T ≥ T1 and s1 ≤ s ≤ N ,

−β(s)γk,N(s, a;T) ≤ β(s)

(
2c

1− λ
+ εN

)
<

ε

2
β(s̄)

=⇒ β(s)γk,N(s, a;T) > − ε
2
β(s̄) ≥ β(s̄)γk,N(s̄, ā;T).

Thus, the maximum improvement in Step 2(d) of the algorithm must occur in a state s < s1,

and we have,

β(sk,N(T))γk,N(T) = min
s≤N, a∈A

β(s)γk,N(s, a;T) = min
s≤s1, a∈A

β(s)γk,N(s, a;T)

≤ β(s̄)γk,N(s̄, ā;T)

=⇒ γk,N(T) ≤ β(s̄)

B
γk,N(s̄, ā;T),

where B = min{β(s) : s < s1}.

Now, let N3, T2 be such that for all N ≥ N3 and T ≥ T2, δ̄(s̄, ā, N, T) < ε β(s̄)/(B+β(s̄)).

58

Then, it follows that for N ≥ max{s1, N1, N2, N3} and T ≥ max{T1, T2},

γk,N(T) ≤ β(s̄)

B
γk,N(s̄, ā;T) ≤ β(s̄)

B

{
γk(s̄, ā) + δ̄(s̄, ā, N, T)

}

=
β(s̄)

B

{
− ε+ δ̄(s̄, ā, N, T)

}

<
β(s̄)

B

{
− ε+

β(s̄)

B + β(s̄)
ε

}
=
ε β(s̄)

B

{
− 1 +

β(s̄)

B + β(s̄)

}

= − ε β(s̄)

B + β(s̄)
< −δ̄(s̄, ā, N, T).

Thus, for all N ≥ max{s1, N1, N2, N3} and T ≥ max{T1, T2}, condition (3.13) is satisfied,

and Step 2 of the algorithm terminates finitely.

Conversely, suppose Step 2 of the algorithm terminates for some N = N(k), T = T (k).

Then,

γk,N(k)(T (k)) = γk,N(k)(sk, ak;T (k)) < −δ̄(sk, ak, N(k), T (k))

=⇒ γk(sk, ak) ≤ γk,N(k)(sk, ak;T (k)) + δ̄(sk, ak, N(k), T (k)) < 0.

This implies, by Lemma 3.5.2, that the policy σk is not optimal.

We point out here that if the algorithm does find an optimal policy σk in some iteration,

then the inner loop in Step 2 of the algorithm does not terminate. As such, our algorithm

cannot tell if it has indeed discovered an optimal policy. This, however, is an inherent feature

of countable-state MDPs and not just a limitation of our algorithm. In particular, given a

policy σ, it is not possible to check with finite computations if the policy is optimal, and

this subtle issue persists as in the previous chapter and in [22, 30]. Note also that if σk is

optimal, the algorithm does not proceed further and thus only generates a finite number of

policies. In that case, for notational convenience, we interpret that the sequence of policies

σt is still infinite, with σt ≡ σk for all t ≥ k.

59

We now proceed to study the values of the sequence of policies generated by the algorithm.

The following sequence of results proves that the policies generated by our algorithm are

strictly non-increasing in value. Unlike similar results in the previous chapter and [22, 30],

we are no longer able to prove this result by examining the difference of the subsequent value

functions. Instead, we use the properties of the robust evaluation operator. Recall that V

was defined as the space of all bounded functions on S, and it is a Banach space in the

supremum norm. The evaluation operator Lσ for a policy σ was defined as

Lσ(u)(s) = sup
p∈Pσs

Ep[c(s, σ(s), s′) + λu(s′)].

Lσ is clearly a monotone operator, i.e., u ≤ v =⇒ Lσ(u) ≤ Lσ(v). The following lemma

is a simple consequence of Theorem 3 in [28], and we include it here for completeness. The

proof is very similar to that of the original theorem and is omitted.

Lemma 3.5.11. For any fixed stationary policy σ, its evaluation operator Lσ is a contraction

mapping on V .

Since the value function vk is the fixed point of the operator Lσk , it follows that for any

u ∈ V , (Lσk)nu → vk uniformly as n → ∞. Now, suppose a policy σ is not optimal. Let µ

be a new policy obtained by updating σ in a single state with an action which gives strict

reduction in cost. The following lemma shows that µ must be strictly better than σ in value.

We point out that the result seems intuitively true, but the proof is not straightforward due

to the implicit, nonlinear nature of the robust Bellman equations.

Lemma 3.5.12. Let σ and µ be two stationary policies which satisfy the following: γσ(s̄, ā) <

0, and µ(s̄) = ā 6= σ(s̄); µ(s) = σ(s) for all s 6= s̄. Then, vµ(s) ≤ vσ(s) for all s ∈ S, and

vµ(s̄) ≤ vσ(s̄) + γσ(s̄, ā) < vσ(s̄).

Proof. Recall from Equation (3.16) that the improvement is defined as

γσ(s̄, ā) = sup
p∈P ās̄

(
Ep[c(s̄, ā, s

′) + λvσ(s′)]
)
− vσ(s̄) < 0.

60

Let v0 = vσ and define functions vn = Lµ(vn−1) = (Lµ)n(vσ) for n = 1, 2, Then, since

µ(s̄) = ā, we have

v1(s̄) = Lµ(vσ)(s̄) = sup
p∈P ās̄

(
Ep[c(s̄, ā, s

′) + λvσ(s′)]
)

= vσ(s̄) + γσ(s̄, ā) < vσ(s̄).

Further, for s 6= s̄, µ(s) = σ(s). So we have

v1(s) = sup
p∈Pµs

(
Ep[c(s, µ(s), s′) + λvσ(s′)]

)
= sup

p∈Pσs

(
Ep[c(s, σ(s), s′) + λvσ(s′)]

)
= vσ(s).

Thus, v1 ≤ vσ. Since Lµ is a monotone operator, we have that v2 = Lµ(v1) ≤ Lµ(vσ) =

v1 ≤ vσ. Repeating this process gives that vn = Lµ(vn−1) = (Lµ)n(vσ) ≤ vσ for all n. Then,

taking limits as n→∞, we have that vµ ≤ vσ.

By the same argument, we also have vµ(s) ≤ v1(s) for all s ∈ S. In particular, vµ(s̄) ≤

v1(s̄) = vσ(s̄) + γσ(s̄, ā) < vσ(s̄). This completes the proof.

Our algorithm updates the policies in a similar manner as described in the previous

lemma, except that it uses the approximate improvement to determine an improving state-

action pair in each iteration. Even so, the adaptive choice of N and T ensures that the true

values of the policies generated by the algorithm improve in each iteration. The following

corollary establishes this.

Corollary 3.5.13. If a policy σk is not optimal, then vk+1(s) ≤ vk(s) for all states s ∈ S,

with vk+1(sk) ≤ vk(sk) + γk(sk, ak) < vk(sk).

Proof. Suppose a policy σk is not optimal. Then, by Lemma 3.5.10, Step 2 of the algorithm

terminates finitely for some N = N(k), T = T (k) and

γk(sk, ak) ≤ γk,N(k)(sk, ak;T (k)) + δ̄(sk, ak, N(k), T (k)) < 0.

Also, σk+1(sk) = ak and σk+1(s) = σk(s) for all s 6= sk. Thus, by Lemma 3.5.12, vk+1(s) ≤

vk(s) for all s ∈ S, and vk+1(sk) ≤ vk(sk) + γk(sk, ak) < vk(sk).

61

The policy update scheme ensures that every non-optimal policy generated by the algo-

rithm is strictly better than the previous one. The following result states that once a policy

has been found to be non-optimal, the algorithm never generates it again.

Corollary 3.5.14. The algorithm does not repeat any non-optimal policy σk.

Proof. Let σk be any non-optimal policy. Suppose there exists j > k such that σj ≡ σk.

Then, vk ≡ vj. But from Corollary 3.5.13, we know that

vj ≤ vj−1 ≤ . . . ≤ vk.

Then all the inequalities above must be equalities, which is a contradiction to Corollary

3.5.13, since vk and vk+1 differ strictly in at least one state as σk is not optimal. Hence, no

two non-optimal policies generated by the algorithm can be identical.

Recall that we are minimizing
∑
s∈S

β(s)v(s). In exact policy iteration, iteration k would

update the policy in some state s̄k with an action āk which gives the largest improvement in

the weighted value function β(·)vk(·) across all state-action pairs. As the algorithm goes on,

the value functions would approach optimality leaving less and less room for improvement,

and the amount of cost-reduction β(s̄k)γk(s̄k, āk) would shrink to zero. Our algorithm also

looks for the largest improvement, but only among states s ≤ N(k) and uses the approximate

improvement function γ̂k,N(k)(·, ·;T (k)) to do so. As such, our update may not be the best

possible across all states in S. Nonetheless, the true weighted improvement for (sk, ak) still

vanishes asymptotically. This is established in the next lemma.

Lemma 3.5.15. The weighted improvement β(sk)γk(sk, ak)→ 0 as k →∞.

Proof. Define fk =
∑
s∈S

β(s)vk(s). Then, 0 ≤ fk < ∞ for all k. By Corollary 3.5.13, we

have that fk+1 ≤ fk + β(sk)γk(sk, ak) ≤ fk for all k. This implies that the sequence fk

converges. Further, fk+1 − fk ≤ β(sk)γk(sk, ak) < 0 for all k. Taking limits as k →∞ gives

that β(sk)γk(sk, ak)→ 0.

62

In iteration k, our approximate algorithm includes the first N(k) states from S and

performs T (k) steps of successive approximation. Our next lemma establishes two things.

First, N(k)→∞ as k →∞. That is, the algorithm asymptotically includes all of S. Second,

T (k) → ∞ as k → ∞, which implies that the approximate policy evaluation step becomes

exact at infinity. We also point out that this is the only place where we use the fact that the

algorithm always sets N and T equal to each other.

Lemma 3.5.16. N(k)→∞ and T (k)→∞ as k →∞.

Proof. We will first prove that N(k) → ∞, and the idea of the proof is similar to Lemma

3.5.7 in [22].

The lemma holds trivially if σk is optimal for any k; hence we assume that this is not the

case. So the algorithm produces an infinite sequence of distinct policies σk.

Now, first suppose that N(k) 6→ ∞ as k →∞. Then, there exists an integer M such that

N(k) = M for infinitely many k. In particular, let rk be a subsequence such that N(rk) = M

for all k. Then, the policies σrk differ only in states s ≤M . Since A is finite, there are only

finitely many distinct policies of this kind. In particular, this implies that there are policies

σrk ≡ σrj for rk 6= rj. This is a contradiction, as we have from Corollary 3.5.14 that the

algorithm does not repeat any non-optimal policy. Hence, we must have N(k)→∞.

Finally, since our algorithm varies N and T so that they are always equal, we conclude

that as k →∞, T (k)→∞ as well. This completes the proof.

Finally, we proceed to prove our main theorem, which establishes that the value functions

of the sequence of policies generated by our algorithm converge to the optimal value in the

β-norm.

Theorem 3.5.17. Let v∗(·) denote the optimal value function of the robust countable-state

MDP. Then,

‖vk‖β → ‖v∗‖β as k →∞.

63

Proof. The theorem is trivially true if σk is optimal for some k. So let us assume that this is

not the case. Then, from Corollary 3.5.14, we know that the algorithm generates an infinite

sequence of distinct policies.

We first claim that there exists a subsequence rj such that srj →∞ as j →∞. We will

prove this by contradiction. Suppose there exists an N such that sk ≤ N for all k. Then,

the algorithm updates the policy only in states s ≤ N and keeps all actions in states s > N

fixed. Since A is finite, there are only finitely many distinct policies that the algorithm can

find, which is a contradiction.

Now, let F denote the set of all stationary policies, i.e., F =
∏
s∈S

A. The product topology

on F is metrizable, and let ρ denote a corresponding metric on F . Then, F is sequentially

compact with respect to ρ by Tychonoff’s theorem. Therefore, the sequence σrj has a con-

vergent subsequence σtj . Denote the limit of this sequence by σ̃. Further, the value functions

vtj lie in the set V = {v ∈ V : 0 ≤ v(s) ≤ c/(1− λ) for all s ∈ S}, which is also compact in

the product topology by Tychonoff’s theorem. Thus, there is a convergent subsequence vuj

of vtj . Let ṽ be the limit of this sequence. Note that σuj also converges to σ̃.

We now show that ṽ is the value of σ̃. Fix a state s ∈ S. For any j,

vuj(s)− sup
p∈Pσ

uj
s

Ep[c(s, σ
uj(s), s′) + λvuj(s′)] = 0. (3.33)

Convergence in the product topology gives us that σuj(s)→ σ̃(s) in A as j →∞. Since

A is finite, there exists a number J1(s) and an action a(s) such that for all j ≥ J1(s),

σuj(s) = a(s). Then, for j ≥ J1(s), we rewrite (3.33) as

vuj(s)− sup
p∈Pa(s)

s

Ep[c(s, a(s), s′) + λvuj(s′)] = 0. (3.34)

64

Let A be defined as

A = ṽ(s)− sup
p∈Pa(s)

s

Ep[c(s, a(s), s′) + λṽ(s′)]. (3.35)

We must show that A = 0. For any fixed p ∈ Pa(s)
s and j ≥ J1(s),

vuj(s) = sup
p∈Pa(s)

s

Ep[c(s, a(s), s′) + λvuj(s′)]

≥ Ep[c(s, a(s), s′) + λvuj(s′)]

=⇒ lim
j→∞

vuj(s) ≥ lim
j→∞

Ep[c(s, a(s), s′) + λvuj(s′)],

=⇒ ṽ(s) ≥ Ep[c(s, a(s), s′) + λṽ(s′)],

where we have used the Dominated Convergence theorem on the right hand side of the last

inequality. Since the above is true for all p ∈ Pa(s)
s , it follows that

ṽ(s) ≥ sup
p∈Pa(s)

s

Ep[c(s, a(s), s′) + λṽ(s′)] =⇒ A ≥ 0.

We need to further prove that this inequality cannot be strict. For this, consider an

arbitrary ε > 0. For j ≥ J1(s),

A = ṽ(s)− sup
p∈Pa(s)

s

Ep[c(s, a(s), s′) + λṽ(s′)]− vuj(s) + sup
p∈Pa(s)

s

Ep[c(s, a(s), s′) + λvuj(s′)].

For each j, let pj ∈ Pa(s)
s be such that

sup
p∈Pa(s)

s

Ep[c(s, a(s), s′) + λvuj(s′)] < Epj [c(s, a(s), s′) + λvuj(s′)] + ε.

65

Then,

A ≤ ṽ(s)− Epj [c(s, a(s), s′) + λṽ(s′)]− vuj(s) + Epj [c(s, a(s), s′) + λvuj(s′)] + ε

= ṽ(s)− vuj(s) + λEpj [v
uj(s′)− ṽ(s′)] + ε.

For any n ∈ N, we can write

A ≤ ṽ(s)− vuj(s) + ε+ λEpjn
[vuj(s′)− ṽ(s′)] + λEpjn

[vuj(s′)− ṽ(s′)]

≤ ṽ(s)− vuj(s) + ε+ λEpjn
[vuj(s′)− ṽ(s′)] +

2cλ

1− λ
Mn(s, a(s)).

Since Pa(s)
s satisfies Assumption 3.5.1, there exists an integer n0 ≥ s such that Mn0(s, a(s)) <

ε. Further, once n0 is fixed, we know that vuj(·) converges to ṽ(·) uniformly on {1, 2, . . . , n0} ⊂

S. Then, choose an integer J2(s) ≥ J1(s) such that |vuj(s′)− ṽ(s′)| < ε for all j ≥ J2(s) for

all s′ ∈ {1, 2, . . . , n0}. Thus, for j ≥ J2(s),

A ≤ ε+ ε+ λEpjn0
[ε] +

2cλ

1− λ
ε ≤ ε+ ε+ λε+

2cλε

1− λ
= ε

(
2 + λ+

2cλ

1− λ

)
.

Since ε > 0 was arbitrary and A was already shown to be nonnegative, we conclude that

A = 0. Thus, the limiting value function ṽ(·) is in fact the value of the limiting policy σ̃.

We now show by contradiction that the limiting policy must be optimal. Suppose σ̃ is

not optimal. Then, by Lemma 3.5.2, there exists a state-action pair (s, a) such that

0 < ε = ṽ(s)− sup
p∈Pas

Ep[c(s, a, s
′) + λṽ(s′)].

Again, for any j, let pj(·|s, a) ∈ Pas be such that

sup
p∈Pas

Ep[c(s, a, s
′) + λvuj(s′)] < Epj [c(s, a, s

′) + λvuj(s′)] + ε/5.

66

Then,

ε− vuj(s) + sup
p∈Pas

Ep[c(s, a, s
′) + λvuj(s′)]

= ṽ(s)− sup
p∈Pas

Ep[c(s, a, s
′) + λṽ(s′)]− vuj(s) + sup

p∈Pas
Ep[c(s, a, s

′) + λvuj(s′)]

≤ ṽ(s)− Epj [c(s, a, s
′) + λṽ(s′)]− vuj(s) + Epj [c(s, a, s

′) + λvuj(s′)] + ε/5

= (ṽ(s)− vuj(s)) + λEpj [v
uj(s′)− ṽ(s′)] + ε/5

= (ṽ(s)− vuj(s)) + λEpjn
[vuj(s′)− ṽ(s′)] + λEpjn

[vuj(s′)− ṽ(s′)] + ε/5

≤ (ṽ(s)− vuj(s)) + λEpjn
[vuj(s′)− ṽ(s′)] +

2cλ

1− λ
Epjn

[1] + ε/5

≤ (ṽ(s)− vuj(s)) + λEpjn
[vuj(s′)− ṽ(s′)] +

2cλ

1− λ
Mn(s, a) + ε/5 (3.36)

for any integer n. Choose n ≥ s so that 2cλMn(s, a)/(1 − λ) < ε/5. Choose J3(s) so that

|vuj(s′) − v(s′)| < ε/5 for all j ≥ J3(s) and for all s′ ≤ n. For such j, the expression (3.36)

can be bounded above by 4ε/5. Thus,

ε− vuj(s) + sup
p∈Pas

Ep[c(s, a, s
′) + λvuj(s′)] ≤ 4ε/5 =⇒ ε/5 ≤ vuj(s)− sup

p∈Pas
Ep[c(s, a, s

′) + λvuj(s′)].

By Lemma 3.5.16, N(uj) can be made arbitrarily large as j → ∞. In particular, there

exists J4(s) ≥ J3(s) such that for all j ≥ J4(s), we must have N(uj) ≥ s. Then,

ε/5 ≤ vuj(s)− sup
p∈Pas

Ep[c(s, a, s
′) + λvuj(s′)]

= −γuj(s, a)

≤ −γuj ,N(uj)(s, a, T (uj)) + δ̄(s, a,N(uj), T (uj)) ∀ j ≥ J4(s). (3.37)

Since N(uj), T (uj) → ∞ as j → ∞, the second term vanishes asymptotically by Lemma

3.5.8. We show that the limit-superior of the first term must also be non-positive.

Recall that in iteration k, the policy is updated in state sk by choosing action ak to give the

67

largest weighted improvement. Thus, β(suj)γuj ,N(uj)(suj , auj , T (uj)) ≤ β(s)γuj ,N(uj)(s, a, T (uj)).

Therefore,

−β(s)γuj ,N(uj)(s, a, T (uj)) ≤ −β(suj)γuj ,N(uj)(suj , auj , T (uj))

≤ −β(suj)γuj(suj , auj) + β(suj)δ̄(suj , auj , N(uj), T (uj)).

The two terms asymptotically vanish by Lemmas 3.5.15 and 3.5.8 respectively. Thus, the

sequence −β(s)γuj ,N(uj)(suj , auj , T (uj)) is dominated by a sequence which converges to zero.

Since β(s) > 0, we conclude that lim sup
j→∞

(−γwj ,N(wj)(swj , awj , T (wj))) ≤ 0.

This yields a contradiction to (3.37), and we conclude that the policy σ̃ must be optimal,

and its value ṽ is the optimal value function, that is, ṽ = v∗.

Note that so far we have only established point-wise subsequential convergence of the

value functions. However, for each state s ∈ S, we have from Lemma 3.5.12 that the

sequence vk(s) is a monotonically decreasing non-negative sequence of real numbers; hence

it must be convergent. This proves that vk(s) → v∗(s) as k → ∞ for every s ∈ S. Finally,

we invoke the Dominated Convergence Theorem once again to conclude that

∑
s∈S

β(s)vk(s)→
∑
s∈S

β(s)v∗(s) i.e. ‖vk‖β → ‖v∗‖β as k →∞.

This completes the proof.

Our next result proves that the sequence of policies generated by the algorithm reaches

arbitrarily close to an optimal policy as k → ∞. The proof is identical to [22], but we still

include it here for completeness.

Theorem 3.5.18 (Policy Convergence). For any ε > 0, there exists an iteration counter kε

such that ρ(σk, σk∗) < ε for some optimal policy σk∗, for all k ≥ kε. In fact, if the MDP has

a unique optimal policy σ∗, then lim
k→∞

σk = σ∗. Further, for every period n, there exists an

iteration counter Kn such that for all k ≥ Kn, actions σk(s) are optimal for all states s ≤ n.

68

Proof. We prove the first claim by contradiction. Suppose this is not true. Then, there

exists an ε > 0 and a subsequence σuk of σk such that ρ(σuk , σ) > ε for all optimal policies

σ, for all k ∈ N. Since the space of all policies F is compact, the sequence σuk has a

convergent subsequence σtk , whose limit is, say, σ̃. Then, there exists an integer K such

that ρ(σtk , σ̃) < ε for all k ≥ K. Further, as in the proof of Theorem 3.5.17, σ̃ must be an

optimal policy. This leads to a contradiction. Hence, the first claim is true.

Further, suppose that σ∗ is the unique optimal policy. Then as shown already, for every

ε > 0, there exists an integer kε, such that ρ(σk, σ∗) < ε for all k ≥ kε. This implies that

lim
k→∞

σk = σ∗.

Now, for the third claim, we note that the result is trivially true if σk is optimal for some

k. When this is not the case, we first claim that given ε > 0 and any state n, there exists an

iteration counter Kn such that for all k ≥ Kn, |σk(s) − σk∗(s)| < ε, for all s ≤ n, for some

optimal policy σk∗. Suppose this is not true. Then, there exists a subsequence uk, and for

each k, a state sk ≤ n such that |σuk(sk) − σ∗(sk)| ≥ ε for all k, for all optimal policies σ∗.

But uk has a further subsequence tk such that σtk converges to an optimal policy σ̃ as in the

proof of Theorem 3.5.17. This leads to a contradiction.

Now, fix 0 < ε < 1 and a state n, and consider any iteration k ≥ Kn. Fix a state

s ≤ n. Then, |σk(s) − σk∗(s)| < ε for some optimal action σk
∗
(s). Since ε < 1 and

σk(s), σk∗(s) ∈ A = {1, 2, . . . , A}, it follows that σk(s) = σk∗(s). This proves that all actions

up to state n are optimal for policies σk with k ≥ Kn.

3.6 Examples

In Section 3.5, we briefly discussed the choice of uncertainty sets and the properties they

must satisfy in order that the proposed algorithm be implementable and convergent. In this

section, we provide some examples that fall within our robust MDP framework. We explain

the intuition behind how appropriate uncertainty sets may be chosen, and demonstrate that

these sets naturally have the desirable properties.

69

3.6.1 Interval uncertainty

In the first example, we show that our proposed method can be used to solve any robust

MDP with interval uncertainty sets for the transition probabilities. These sets are commonly

used in the robust optimization literature; see Chapter 14 of [9] for details.

Consider an instance where a decision-making agent obtains statistical estimates of each

component of the transition probabilities. Confidence bounds on these estimates lead to the

formulation of interval uncertainty sets, where each component p(s′|s, a) of the pmf is known

to lie between some bounds las(s
′) and uas(s

′). More precisely,

Pas = {p(·) ∈M(S) : las(s
′) ≤ p(s′|s, a) ≤ uas(s

′) ∀ s′ ∈ S}. (3.38)

Without loss of generality, let 0 ≤ las(s
′) ≤ uas(s

′) ≤ 1 for all s′ ∈ S. For Pas to be non-empty,

we must also have
∑
s′∈S

las(s) ≤ 1 ≤
∑
s′∈S

uas(s). In fact, we can assume that these inequalities

are strict so that Pas is not a singleton. Suppose, in addition, that
∑
s′∈S

uas(s
′) < ∞. This

ensures that the uncertainty sets satisfy Assumption 3.5.1, since

MN(s, a) = sup
p∈Pas

∑
s′>N

p(s′|s, a) ≤
∑
s′>N

uas(s
′)→ 0 as N →∞.

A special feature of these uncertainty sets is that the inner problem can be solved in closed

form. In fact, any linear objective function
∑
s′∈S

a(s′)p(s′) in which the coefficients are of fixed

sign and only finitely many of them are nonzero, can be maximized in closed form over these

sets. The proof for the case with all nonnegative coefficients is given below. A similar logic

can be used when the coefficients are non-positive. We also derived a similar result in the

context of a (finite-dimensional) healthcare application in [40].

70

Consider the LP

max
∑
s′≤m

α(s′)p(s′)

s.t. l(s′) ≤ p(s′) ≤ u(s′), s′ ∈ S,∑
s′∈S

p(s′) = 1.

Suppose α(s′) ≥ 0 for all s′. Sort and re-index the non-zero coefficients (if necessary) so that

α(1) ≥ α(2) ≥ . . . ≥ α(m) ≥ 0. Then, define the switching-index j as the smallest positive

integer such that
∑
s′≤j

u(s′) +
∑
s′>j

l(s′) ≥ 1. Such an index exists since
∑
s′∈S

uas(s) > 1. The

optimal solution is given by

p∗(s′) =


u(s′), s′ < j,

1−
∑
s′<j

u(s′)−
∑
s′>j

l(s′), s′ = j,

l(s′), s′ > j.

Clearly, the components of p∗ sum up to 1 and l(s′) ≤ p∗(s′) ≤ u(s′) for all s′ 6= j.

Moreover, by choice of j,

∑
s′<j

u(s′) +
∑
s′≥j

l(s′) < 1 ≤
∑
s′≤j

u(s′) +
∑
s′>j

l(s′)

=⇒ l(j) ≤ 1−
∑
s′<j

u(s′)−
∑
s′>j

l(s′) ≤ u(j).

Thus, the proposed solution is feasible. Let F (·) be the objective function. To prove opti-

mality, we show that F (p∗) ≥ F (p) for any feasible solution p. If j ≥ m, we have

F (p∗)− F (p) =
∑
s′≤m

α(s′)(u(s′)− p(s′)) ≥ 0.

71

Otherwise,

F (p∗)− F (p) =
∑
s′<j

α(s′)(u(s′)− p(s′)) + α(j)(p∗(j)− p(j)) +
∑

j<s′≤m

α(s′)(l(s′)− p(s′))

=
∑
s′≤j

α(s′)(u(s′)− p(s′)) +
∑

j<s′≤m

α(s′)(l(s′)− p(s′))

+ α(j)
(

1−
∑
s′<j

u(s′)−
∑
s′>j

l(s′)− 1 +
∑
s′ 6=j

p(s′)
)

=
∑
s′≤j

[α(s′)− α(j)︸ ︷︷ ︸
≥0

](u(s′)− p(s′)︸ ︷︷ ︸
≥0

) +
∑

j<s′≤m

[α(s′)− α(j)︸ ︷︷ ︸
≤0

](l(s′)− p(s′)︸ ︷︷ ︸
≤0

)

+ α(j)
(∑
s′>m

(p(s′)− l(s′)︸ ︷︷ ︸
≥0

)
)

≥ 0.

Hence, the proposed solution is optimal. This implies that the N -state inner problem can be

solved in closed form, by defining α(s′) = c(s, a, s′)+λv(s′) ≥ 0 for s′ ≤ N , and reordering the

coefficients in descending order. Moreover, MN(s, a) = sup
p∈Pas

∑
s′>N

p(s′) = 1+ sup
p∈Pas

(
−
∑
s′≤N

p(s′)
)

can also be computed in closed form. The same is also true for the LPs which arise in the

computation of the bound δ̄(s, a,N, T). In all these problems, we can choose εN to be

identically zero.

Thus, robust MDPs with interval uncertainty sets for the transition probabilities can be

solved using the proposed method.

3.6.2 Bounded reachability

This example considers a class of problems where the change in state of a system in a single

period is uniformly bounded above by some constant M . That is, if the system transitions

from state s to s′ under some action a, we must have s′ ≤ s + M . Note that the set of all

possible states in any period is still the entire set S.

A particular example of this model is the infinite-horizon inventory management problem

72

described in Example 1 of [30], wherein a seller controls the inventory of a single product

with unlimited inventory capacity. The objective is to minimize the total discounted cost.

The state s of the system is defined as the current inventory level and can take any value in

S = {0, 1, 2, . . .}. The seller chooses an order quantity a ∈ A = {0, 1, . . . ,M}, where M is

some upper limit on the order quantity in a period. If the demand in a period is t units and

a units of the product are ordered, the inventory level changes from s to s+ a− t, which is

at most s+ a ≤ s+M . Thus, this problem fits within the framework described above, and

our method applies to a robust bounded-cost variant of the same.

In the nominal case, the bound on state transitions implies that the transition probability

p(·|s, a) for any state-action pair (s, a) is supported on {0, 1, . . . , s+M}. Keeping the same

interpretation in mind, the uncertainty sets Pas are also chosen so that p(s′|s, a) = 0 for all

s′ > s+M . We first note that such an uncertainty set always satisfies Assumption 3.5.1, as

MN(s, a) = sup
p∈Pas

∑
s′>N

p(s′) = 0 for all N > s+M.

In fact, the inner problem also reduces to a finite-dimensional optimization problem, and

can be solved to arbitrary accuracy. Therefore, our uncertainty sets have all the requisite

properties and the proposed policy iteration algorithm can be used. Moreover, we note that

the computation of a uniform bound δ̄(s, a,N, T) can also be simplified in this case.

73

We have,

MN(s, a) = sup
p∈Pas

∑
s′>N

p(s′|s, a) = sup
p∈Pas

∑
N<s′≤s+a

p(s′|s, a) ≤ sup
p∈Pas

∑
N<s′≤s+M

p(s′|s, a) ∀ a

=⇒ MN(s) ≤

0, N ≥ s+M,

1, N < s+M

= 1{N < s+M}.

sup
p∈Pas

EpN [MN(s′)] = sup
p∈Pas

∑
s′≤N

p(s′|s, a)1{N < s′ +M}

= sup
p∈Pas

∑
s′≤N,s+a
N−M<s′

p(s′|s, a) ≤ sup
p∈Pas

∑
s′≤N,s+M
N−M<s′

p(s′|s, a)

≤

0, min{N, s+M} ≤ N −M,

1, min{N, s+M} > N −M
= 1{N < s+ 2M}.

Proceeding in this manner gives that

BN(s;T) ≤ c

1− λ

T∑
t=1

λt−11{N < s+ tM}. (3.39)

This expression is the same as that obtained in the nominal case for the inventory control

model in [30]. Recall that BN(s;T) was used in the recursive computation of the uniform

bound δ̄ in Lemma 3.5.8. In this model, however, it is easier to compute an upper bound

on δ̄ using the right-hand-side of (3.39) instead of BN(s;T). This bound also vanishes as N

and T grow, and can be used in place of δ̄ in Step 2(e) of the algorithm.

3.6.3 Stochastic equipment replacement

Finally, we provide a specific application which does not fall under the previous two classes of

models. A nominal version of this model is discussed in [21], and an unbounded-cost variant

appears in Section 6.10 of [35].

Consider a stochastic equipment replacement model where the state s ∈ {0, 1, 2, ...}

74

denotes the condition of the equipment at the beginning of a time-period. State 0 corresponds

to a new equipment; larger states represent poorer equipment conditions. At the beginning

of each time-period, the decision-maker can either choose to replace the equipment with a

new one (action 0) or keep the existing equipment (action 1). Between two decision epochs,

the condition of the equipment worsens by i ≥ 0 states with probability q(i). This leads to

the transition probabilities

p(s′|s, 0) = q(s′), s′ ≥ 0,

p(s′|s, 1) =

0, s′ < s,

q(s′ − s), s′ ≥ s.

The costs in this model are given by

c(s, 0) = α + h(0), c(s, 1) = h(s),

where α > 0 is the cost of buying a new piece of equipment and h(s) is the cost of operating

an equipment in condition s for one period. It is natural to expect that h(s) is non-decreasing

in s as it should be cheaper to operate an equipment that is in a better condition. Assume

that h(·) is bounded and non-negative as well. For example, h(s) = 1− exp (−s). Thus, the

immediate costs are bounded between zero and α + 1.

Now, suppose we have some empirical estimate of the distribution q(·). It is reasonable

to assume that q(i) is non-increasing in i, since the probability to worsen by i + 1 states

should not be larger than the probability of worsening by i states. An example of this would

be if q were a geometric distribution, where q(i) = βi(1 − β), i = 0, 1, In practice,

one would often estimate the parameter β instead of the distribution directly. Suppose the

0 < l ≤ u < 1 represent some lower and upper confidence bounds on the value of β.

75

This gives us the following uncertainty sets.

P0
s =

{
p ∈M(S) : p(s′) = (1− β)βs

′
, s′ ∈ S, l ≤ β ≤ u

}
,

P1
s =

{
p ∈M(S) : p(s′) = 0, s′ < s; p(s′) = (1− β)βs

′−s, s′ ≥ s, l ≤ β ≤ u
}
.

Note that each of these sets satisfies Assumption 3.5.1, since
∑
s′>N

p(s′) ≤ (1− l)uN+1/(1−u)

for all p ∈ P0
s , and similarly for P1

s .

For any N ∈ S and states s ≤ N ,

MN(s, 0) = sup
p(·|s,0)∈P0

s

∑
s′>N

p(s′|s, 0) = sup
β∈[l,u]

∑
s′>N

(1− β)βs
′
= sup

β∈[l,u]

βN+1 = uN+1.

MN(s, 1) = sup
p(·|s,1)∈P1

s

∑
s′>N

p(s′|s, 1) = sup
β∈[l,u]

∑
s′>N

(1− β)βs
′−s = sup

β∈[l,u]

βN+1−s = uN+1−s.

MN(s) = max{MN(s, 0),MN(s, 1)} = uN+1−s.

Computation of the uniform bound δ̄ using Algorithm 3, as well as the solution of the inner

problem, consists of numerically solving problems similar in structure to the following one-

variable nonlinear maximization probLem

max
∑
s′≤N

α(s′)p(s′|s, 0)

s.t. p ∈ P0
s

≡
max (1− β)

∑
s′≤N

α(s′)βs
′

s.t. l ≤ β ≤ u.

These problems can easily be solved to arbitrary accuracy, and the proposed policy iteration

method can be used to solve the robust MDP.

3.7 Conclusion

An as-is execution of policy iteration on robust MDPs encounters severe hurdles when the

state-space is countable. We used approximation techniques to resolve these challenges

and delivered and algorithm that can be implemented in practice. The policy evaluation

76

and improvement steps in the existing method require an infinite amount of computation,

whereas we reduced them to finite systems of equations via a state-space truncation ap-

proach. Additional complications in policy evaluation ensued due to the nonlinearity of the

robust evaluation operator. These were resolved by employing a finite number of successive

approximation steps to compute an approximate value function. Further, exact solutions to

the inner problems might not always be available, and our method accounted for the errors

arising from their numerical solution to some nonzero accuracy. These ideas led to an ap-

proximate policy iteration algorithm where each step requires a finite amount of memory and

computation. This algorithm generates a sequence of policies and computes their approxi-

mate values. Although the true values of these policies are unknown, the method guarantees

that they improve in each iteration. We proved that the proposed algorithm converges in

value to the optimal value function, and the policies generated converge subsequentially to

an optimal policy. We also provided three examples which fall within our framework —

robust MDPs with interval uncertainty sets, robust MDPs where the change in state in a

single period is bounded, and a robust equipment replacement probLem We showed that

these models possess the desired properties that render approximate policy iteration a viable

algorithm.

A natural direction for future research would be to extend our policy iteration algorithm

to the case where immediate cost functions are allowed to be unbounded. This is not straight-

forward, primarily because the theory of countable-state robust MDPs is currently available

only for the bounded-cost case [28]. As such, any algorithmic work would first require an

extension of the theory in Section 6.10 of Puterman [35] to the robust setting, including the

optimality of the robust Bellman equations and the existence of optimal solutions. These

results are developed in the next chapter.

77

Chapter 4

ROBUST COUNTABLE-STATE MARKOV DECISION
PROCESSES WITH UNBOUNDED COSTS

4.1 Introduction

In the previous chapter, we assumed that the immediate cost function c(s, a, s′) was uniformly

bounded. This greatly simplified the calculations within the proofs, in addition to ensuring

convergence of various infinite sums and expectations that arise therein. More importantly,

it allowed us to invoke the existing theory for robust MDPs and restrict our attention to

algorithm development. In many applications, however, a naturally arising cost function

violates this assumption. Thus, we widen the scope in this chapter to allow for more general

cost functions similar to those considered in [30] and Section 6.10 of [35].

The ultimate objective is to develop a practical convergent method for solving robust

unbounded-cost MDPs, but the first hurdle in this case arises from the fact that a theoretical

treatment of this class of MDPs is not available in the literature. Hence, in this chapter,

we develop a theoretical framework for robust countable-state MDPs with unbounded cost

functions. We establish the optimality of the robust Bellman equations. We show that the

robust Bellman operator is a J-step contraction mapping on an appropriately defined Banach

space, thus guaranteeing the existence and uniqueness of an optimal value function.

4.2 Problem Setup

Consider an infinite-horizon MDP with decision-epochs t = 0, 1, 2, The state-space

S = {1, 2, . . . , } is assumed to be countable, while the action-set A(s) = {1, 2, . . . , A} is

discrete (finite or countably infinite). At the start of period t, the system occupies a state

s ∈ S. A decision-making agent observes this state and chooses an action a ∈ A(s). Then,

78

at the end of the period, the system transitions to a state s′ ∈ S with probability p(s′|s, a).

This transition incurs a cost c(s, a, s′) discounted by a factor λt, where λ ∈ (0, 1) is a fixed

parameter. A decision rule is a function which assigns an action to every state in S, while a

policy σ = (d1, d2, . . .) is a function prescribing a decision rule dt for every period t. Let Π be

the collection of all admissible policies. The agent aims to find a policy in Π that minimizes

the expected total discounted cost over the entire horizon.

As in the previous chapters, the nominal setup described above assumes that transi-

tion probability p(·|s, a) for any state-action pair (s, a) is a model parameter known to the

decision-maker. In practice, these probabilities are estimated statistically, allowing for esti-

mation errors to affect the choice of optimal policy. The robust approach seeks to immunize

the decision-maker against these errors by assuming that the transition probabilities are am-

biguous. LetM(S) be the set of all probability mass functions (pmfs) on S. We assume that

for each state-action pair (s, a), the pmf p(·|s, a) is only known to lie in an uncertainty set

Pas ⊂ M(S) comprising plausible choices for the true transition probabilities. Given these

sets, the set of transition probabilities consistent with a fixed decision-rule d is

T d =
{
p : S →M(S) : ∀s ∈ S,p(s) , p(·|s, d(s)) ∈ Pd(s)

s

}
.

Following the rectangularity assumption in [28], we also assume that for a policy σ =

(d1, d2, . . .), the set of probability distributions consistent with σ is given by T σ = {τ =

(p1,p2, . . .) : pt ∈ T dt}. In the robust variant, the decision-maker follows a conservative

approach and tries to minimize the worst-case expected total discounted cost. This amounts

to solving the following optimization problem.

v∗(s) = inf
σ∈Π

sup
τ∈T σ

Eτ

[∞∑
t=0

λtc(st, dt(st), st+1)
]
, s ∈ S. (4.1)

In the previous chapter, we assumed that the immediate costs c(s, a, s′) were uniformly

bounded for all s, s′ ∈ S and a ∈ A(s). Here, we drop this assumption to allow for more

79

general cost functions that occur naturally in many applications. In particular, the costs are

allowed to be unbounded, provided their growth with s′ is sufficiently slow. This is made

precise with the following assumptions on the behavior of the cost function. For a fixed

state-action pair (s, a) and pmf p(·|s, a), let Ep[u(s′)] be the expected value (or weighted

average) of any function u defined on S. That is, Ep[u(s′)] =
∑
s′∈S

p(s′|s, a)u(s′). We suppress

the (s, a)-dependence in this notation since it is implied by context. Let w be a (known)

function on S such that inf
s∈S

w(s) > 0, and the following properties are satisfied.

Assumption 4.2.1. There exists a constant µ <∞ such that

sup
a∈A(s)

sup
p∈Pas

∣∣∣Ep[c(s, a, s
′)]
∣∣∣ ≤ µw(s), for all s ∈ S. (4.2)

Assumption 4.2.2. There exists a constant κ, 0 ≤ κ <∞, for which

sup
p∈Pas

∑
s′∈S

p(s′|s, a)w(s′) ≤ κw(s) for all s ∈ S, a ∈ A(s). (4.3)

Assumption 4.2.3. There exists a constant α, 0 ≤ α < 1 and an integer J such that

λJ
∑
s′∈S

PJ
σ(s′|s)w(s′) ≤ αw(s) (4.4)

for all σ = (d1, . . . , dJ) and PJ
σ =

J∏
j=1

pdj , where dj is an admissible decision-rule and

pdj ∈ T dj , for 1 ≤ j ≤ J .

Assumption 4.2.1 states that starting in state s and for any choice of action a, the worst-

case expected cost occurred in a single-period transition is at most µw(s). On the other

hand, Assumptions 4.2.2 and 4.2.3 ascertain that the function w itself has some desirable

behavior. Non-robust versions of these assumptions are standard in the unbounded-cost

MDP literature. See [30] and [35] for a detailed discussion and for examples of cost functions

c such that the assumptions are satisfied by a suitably chosen w. A theoretical framework for

80

unbounded cost robust MDPs is not available in the literature, and we proceed to develop

the same in the next section.

4.3 Theoretical Results

The robust Bellman equations are given by

v(s) = inf
a∈A(s)

sup
p∈Pas

Ep[c(s, a, s
′) + λv(s′)], for all s ∈ S. (4.5)

In this section, we establish that a unique solution to (4.5) always exists, and that this

solution must be the optimal value function v∗ for the robust MDP defined in Section 4.2.

Additionally, we prove that solving a sequence of finite-state approximate MDPs to optimal-

ity, asymptotically recovers the optimal value function.

For any function v on S, define the w-norm of v as ‖v‖w , sup
s∈S
|v(s)|/w(s). This is a

well-defined norm since w is a positive function bounded away from zero. Let Vw be the set

of all functions on S whose w-norm is finite. It is easy to see that Vw is a Banach space

under the w-norm. The following lemma shows that the value function for every policy in Π

lies in Vw.

Lemma 4.3.1 (Norm bounds). For each σ ∈ Π and s ∈ S, we have

|vσ(s)| ≤ µ

1− α
[
1 + λκ+ . . .+ (λκ)J−1

]
w(s). (4.6)

Further, ‖vσ‖w ≤ µ
1−α

[
1 + λκ+ . . .+ (λκ)J−1

]
.

81

Proof. Fix a policy σ and state s0. Then,

vσ(s0) = sup
τ∈T σ

(
Eτ

[∞∑
t=0

λtc(st, dt(st), st+1)
])

=⇒ |vσ(s0)| =
∣∣∣ sup
τ∈T σ

(
Eτ

[∞∑
t=0

λtc(st, dt(st), st+1)
])∣∣∣

≤ sup
τ∈T σ

(
Eτ

[∞∑
t=0

λt|c(st, dt(st), st+1)|
])
.

For any n and given a τ ∈ T σ, let τn denote transition probabilities starting from period n,

that is, τn = (pn,pn+1, . . .) and T σn = {τn = (pn,pn+1, . . .) : pt ∈ T dt}.

Then,

|vσ(s0)| ≤ sup
τ∈T σ

(
Eτ

[∞∑
t=0

λt|c(st, dt(st), st+1)|
])

= sup
(p1,τ2)

∈T d1×T σ2

(
Ep1,τ1

[∞∑
t=0

λt|c(st, dt(st), st+1)|
])

= sup
(p1,τ2)

∈T d1×T σ2

(
Ep1,τ1

[
|c(s0, d0(s0), s1)|+

∞∑
t=1

λt|c(st, dt(st), st+1)|
])

= sup
(p1,τ2)

∈T d1×T σ2

(
Ep1

[
|c(s0, d0(s0), s1)|+ Eτ2

[∞∑
t=1

λt|c(st, dt(st), st+1)|
]])

,

where the last equality holds since the term |c(s0, d0(s0), s1)| does not depend on τ 1. It

82

follows that

|vσ(s0)| ≤ sup
p1∈T d1

(
Ep1

[
|c(s0, d0(s0), s1)|+ sup

τ2∈T σ2

(
Eτ2

[∞∑
t=1

λt|c(st, dt(st), st+1)|
])])

≤ sup
p1∈T d1

(
Ep1

[
|c(s0, d0(s0), s1)|

])
+ sup

p1∈T d1

(
Ep1

[
sup
τ2∈T σ2

(
Eτ2

[∞∑
t=1

λt|c(st, dt(st), st+1)|
])])

= sup
p1∈T d1

(
Ep1

[
|c(s0, d0(s0), s1)|

])
+ sup

τ∈T σ

(
Eτ

[∞∑
t=1

λt|c(st, dt(st), st+1)|
])

≤ µw(s0) + sup
τ∈T σ

(
Eτ

[∞∑
t=1

λt|c(st, dt(st), st+1)|
])
.

In the second inequality, we used the fact that sup(f+g) ≤ sup(f)+sup(g) for any functions

f and g. The last inequality follows from Assumption 4.2.1. Using a similar argument as

above, we have that

|vσ(s0)| ≤ µw(s0) + sup
(p1,p2,τ3)

∈T d1×T d2×T σ3

(
E(p1,p2,τ3)

[
λ|c(s1, d1(s1), s2)|+

∞∑
t=2

λt|c(st, dt(st), st+1)|
])

≤ µw(s0) + λ sup
(p1,p2)

∈T d1×T d2

(
E(p1,p2)

[
|c(s1, d1(s1), s2)|

])
+ sup

τ∈T σ

(
Eτ

[∞∑
t=2

λt|c(st, dt(st), st+1)|
])
.

Then, for any p1 ∈ T d1 and p2 ∈ T d2 ,

E(p1,p2)

[
|c(s1, d1(s1), s2)|

]
= Ep1

[
Ep2

[
|c(s1, d1(s1), s2)|

]]
≤ Ep1

[
µw(s1)

]
≤ µκw(s0).

Therefore,

|vσ(s0)| ≤ µ[1 + λκ]w(s0) + sup
τ∈T σ

(
Eτ

[∞∑
t=2

λt|c(st, dt(st), st+1)|
])
.

83

Repeating this process J times gives

|vσ(s0)| ≤ µ[1 + (λκ) + (λκ)J−1]w(s0) + sup
τ∈T σ

(
Eτ

[∞∑
t=J

λt|c(st, dt(st), st+1)|
])

= µ[1 + (λκ) + (λκ)J−1]w(s0)+

sup
τ∈T σ

(
Eτ

[
λJ |c(sJ , dJ(sJ), sJ+1)|+

∞∑
t=J+1

λt|c(st, dt(st), st+1)|
])

≤ µ[1 + (λκ) + (λκ)J−1]w(s0) + λJ sup
(p1,...,pJ+1)

∈T d1×...×T dJ+1

(
E(p1,...,pJ+1)

[
|c(sJ , dJ(sJ), sJ+1)|

])

+ sup
τ∈T σ

(
Eτ

[∞∑
t=J+1

λt|c(st, dt(st), st+1)|
])
.

Again, for any (p1, . . . ,pJ+1) ∈ T d1 × . . .× T dJ+1 ,

λJE(p1,...,pJ+1)

[
|c(sJ , dJ(sJ), sJ+1)|

]
= λJE(p1,...,pJ)

[
EpJ+1

[
|c(sJ , dJ(sJ), sJ+1)|

]]
≤ λJE(p1,...,pJ)

[
µw(sJ)

]
≤ αµw(s0).

Therefore,

|vσ(s0)| ≤ µ[1 + (λκ) + (λκ)J−1]w(s0) + αµw(s0) + sup
τ∈T σ

(
Eτ

[∞∑
t=J+1

λt|c(st, dt(st), st+1)|
])
.

Repeating the above arguments for every group of J terms gives us that

|vσ(s0)| ≤ [1 + λκ+ . . .+ (λκ)J−1]µw(s0) + α[1 + λκ+ . . .+ (λκ)J−1]µw(s0)

+ α2[1 + λκ+ . . .+ (λκ)J−1]µw(s0) + . . .

=
µ

1− α
[1 + λκ+ . . .+ (λκ)J−1]w(s0)

=⇒ ‖vσ‖w ≤
µ

1− α
[1 + λκ+ . . .+ (λκ)J−1].

This completes the proof.

84

Define the robust Bellman operator L on Vw as

L(u)(s) = inf
a∈A(s)

sup
p∈Pas

Ep[c(s, a, s
′) + λu(s′)] for all u ∈ Vw. (4.7)

First, we verify that the operator is well-defined on Vw. For any s ∈ S,

|L(u)(s)| =
∣∣∣ inf
a∈A(s)

sup
p∈Pas

Ep

[
c(s, a, s′) + λu(s′)

]∣∣∣
≤ sup

a∈A(s)

sup
p∈Pas

Ep

[∣∣c(s, a, s′) + λu(s′)
∣∣]

≤ sup
a∈A(s)

sup
p∈Pas

Ep

[∣∣c(s, a, s′)∣∣]+ λEp

[∣∣u(s′)
∣∣]

≤ sup
a∈A(s)

sup
p∈Pas

Ep

[∣∣c(s, a, s′)∣∣]+ λ‖u‖wEp

[
w(s′)

]
≤ sup

a∈A(s)

(
µw(s) + λ‖u‖wκw(s)

)
= (µ+ λκ‖u‖w)w(s).

Since this is true for all s ∈ S, it follows that

‖L(u)‖w ≤ µ+ λκ‖u‖w <∞.

Thus, L : Vw → Vw is a well-defined operator. A function v satisfies the Bellman equations

if and only if it is a fixed point of L. The existence (and uniqueness) of such a fixed point is

established in the following theorem. For bounded-cost MDPs, the contraction property of

the robust Bellman operator guarantees that an optimal solution to the Bellman equations

always exists. However, when costs are unbounded, L is no longer a contraction mapping on

Vw. The next theorem shows that LJ is a contraction mapping on Vw, where J was defined

in Assumption 4.2.3. The idea of the proof is similar to [28].

Theorem 4.3.2. Let L be the robust Bellman operator defined in Equation (4.7).

85

(a) LJ is a contraction mapping on Vw, that is,

‖LJ(u)− LJ(v)‖w ≤ α‖u− v‖w, for all u, v ∈ Vw.

(b) L has a unique fixed point v̄ in Vw, and

v̄(s) = inf
σ∈Π

sup
τ∈T σ

Eτ

[∞∑
t=0

λtc(st, dt(st), st+1)
]

for all s ∈ S.

Proof. We first prove that LJ is a contraction mapping. Let u and v be any two functions in

Vw, and ε be an arbitrary positive number. Fix a state s ∈ S. Suppose LJ(u)(s) ≤ LJ(v)(s).

Then,

0 ≤ LJ(v)(s)− LJ(u)(s) = L(LJ−1(v)(s))− L(LJ−1(u)(s)).

By definition of the infimum, there exists an action a(s) ∈ A(s) such that

L(LJ−1(u)(s)) = inf
a∈A(s)

sup
p∈Pas

Ep

[
c(s, a, s1) + λLJ−1(u)(s1)

]
> sup

p∈Pa(s)
s

Ep

[
c(s, a(s), s1) + λLJ−1(u)(s1)

]
− ε.

Then,

0 ≤ LJ(v)(s)− LJ(u)(s)

< sup
p∈Pa(s)

s

Ep

[
c(s, a(s), s1) + λLJ−1(v)(s1)

]
− sup

p∈Pa(s)
s

Ep

[
c(s, a(s), s1) + λLJ−1(u)(s1)

]
+ ε.

86

Further, there exists a pmf ps ∈ Pa(s)
s such that

sup
p∈PdJ (s)

s

Ep

[
c(s, a(s), s1) + λLJ−1(v)(s1)

]
− ε < Eps

[
c(s, a(s), s1) + λLJ−1(v)(s1)

]
.

Therefore,

0 ≤ LJ(v)(s)− LJ(u)(s)

< Eps
[
c(s, a(s), s1) + λLJ−1(v)(s1)

]
+ ε− Eps

[
c(s, a(s), s1) + λLJ−1(u)(s1)

]
+ ε

= λEps
[
LJ−1(v)(s1)− LJ−1(u)(s1)

]
+ 2ε.

Note that we find such an action a(s) for each state s, which defines a decision-rule dJ .

Moreover, we can also define pJ ∈ T dJ such that pJ(s) = ps as defined above. In this new

notation, we have

0 ≤ LJ(v)(s)− LJ(u)(s) ≤ λEpJ (s)

[
LJ−1(v)(s1)− LJ−1(u)(s1)

]
+ 2ε

Repeating the same argument gives us another decision rule dJ−1 and a transition probability

‘matrix’ pJ−1 ∈ T dJ−1 such that

LJ−1(v)(s1)− LJ−1(u)(s1) ≤ λEpJ−1(s1)

[
LJ−2(v)(s2)− LJ−2(u)(s2)

]
+ 2ε

87

Thus,

0 ≤ LJ(v)(s)− LJ(u)(s)

≤ λEpJ (s)

[
λEpJ−1(s1)

[
LJ−2(v)(s2)− LJ−2(u)(s2)

]
+ 2ε

]
+ 2ε

= λ2E(pJ ,pJ−1)

[
LJ−2(v)(s2)− LJ−2(u)(s2)

]
+ 2(λ+ 1)ε

...

≤ λJE(pJ ,pJ−1,...,p1)

[
v(sJ)− u(sJ)

]
+ 2(λJ−1 + . . .+ 1)ε

≤ ‖v − u‖w
(
λJE(pJ ,pJ−1,...,p1)

[
w(sJ)

])
+ 2(λJ−1 + . . .+ 1)ε

= ‖v − u‖w
(
λJ
∑
sJ∈S

PJ
σ(sJ |s)w(sJ)

)
+ 2(λJ−1 + . . .+ 1)ε,

where σ = (d1, . . . , dJ) and PJ
σ = p1 . . .pJ . Then, by Assumption 4.2.3, it follows that

|LJ(v)(s)− LJ(u)(s)| = LJ(v)(s)− LJ(u)(s) ≤ ‖v − u‖wαw(s) + 2(λJ−1 + . . .+ 1)ε.

A similar argument works by interchanging the roles of u and v above when LJ(u)(s) ≥

LJ(v)(s).

Since ε > 0 was arbitrary, we conclude that

|LJ(v)(s)− LJ(u)(s)| ≤ ‖v − u‖w αw(s) for all s ∈ S,

=⇒ ‖LJ(v)− LJ(u)‖w ≤ α‖v − u‖w.

Thus, LJ is a contraction mapping on Vw.

For the second part of the theorem, we invoke a generalized version of the Banach con-

traction mapping theorem. The theorem states that an operator T on a Banach space X

has a unique fixed point in X, if T n is a contraction mapping for some n ∈ N. Since LJ is a

contraction, L has a unique fixed point in the Banach space Vw. Let us call that fixed point

v̄.

88

Next, we prove that v̄(s) must be the optimal value function defined in (4.1). We do so

by comparing v̄ with the value vσ of an arbitrary policy σ = (d0, d1, . . .) ∈ Π. Note that for

any state s ∈ S and decision-rule d, we have

L(v)(s) = inf
a∈A(s)

sup
p∈Pas

Ep

[
c(s, a, s′) + λv(s′)

]
≤ sup

p∈Pd(s)s

Ep

[
c(s, d(s), s′) + λv(s′)

]
.

We use this argument repeatedly in the following calculations. Fix a state s0 ∈ S. Also, let

Pds denote Pd(s)
s . By definition,

vσ(s0) = sup
τ∈T σ

Eτ

[∞∑
t=0

λtc(st, dt(st), st+1)
]
.

Moreover,

v̄(s0) = L(v̄)(s0)

= inf
a∈A(s)

sup
p0∈Pas

Ep0

[
c(s0, a, s1) + λv̄(s1)

]
≤ sup

p0∈P
d0
s

Ep0

[
c(s, d0(s), s1) + λv̄(s1)

]
≤ sup

p0∈P
d0
s

Ep0

[
c(s, d0(s), s1) + λ

(
sup

p1∈P
d1
s1

Ep1

[
c(s1, d1(s1), s2) + λv̄(s2)

])]
≤ sup

p0∈P
d0
s

Ep0

[
c(s, d0(s), s1) + λ

(
sup

p1∈T d1
Ep1

[
c(s1, d1(s1), s2) + λv̄(s2)

])]
.

Recall that p1 is a transition probability ‘matrix’ such that p1(s) = p1(·|s, d1(s)). Then,

using the fact that sup(f + g) ≤ sup f + sup g for any functions f and g, it follows that

v̄(s0) ≤ sup
p0∈P

d0
s

sup
p1∈T d1

Ep0

[
Ep1

[
c(s, d0(s), s1) + λc(s1, d1(s1), s2) + λ2v̄(s2)

]]
= sup

(p0,p1)

∈T d0×T d1

E(p0,p1)

[
c(s, d0(s), s1) + λc(s1, d1(s1), s2) + λ2v̄(s2)

]
.

89

Repeating this argument n times gives that

v̄(s0) ≤ sup
(p0,...,pn)

∈T d0×...×T dn

E(p0,...,pn)

[n∑
t=0

λtc(st, dt(st), st+1) + λn+1v̄(sn+1)
]

≤ sup
(p0,...,pn)

∈T d0×...×T dn

E(p0,...,pn)

[n∑
t=0

λtc(st, dt(st), st+1)
]

+ sup
(p0,...,pn)

∈T d0×...×T dn

E(p0,...,pn)

[
λn+1v̄(sn+1)

]
= sup

τ∈T σ
Eτ

[n∑
t=0

λtc(st, dt(st), st+1)
]

+ sup
(p0,...,pn)

∈T d0×...×T dn

E(p0,...,pn)

[
λn+1v̄(sn+1)

]
≤ sup

τ∈T σ
Eτ

[n∑
t=0

λtc(st, dt(st), st+1)
]

+ λn+1‖v̄‖w sup
(p0,...,pn)

∈T d0×...×T dn

E(p0,...,pn)

[
w(sn+1)

]
.

In particular, for n = J − 1,

v̄(s0) ≤ sup
τ∈T σ

Eτ

[J−1∑
t=0

λtc(st, dt(st), st+1)
]

+ λJ‖v̄‖w sup
(p0,...,pJ−1)

∈T d0×...×T dJ−1

E(p0,...,pJ−1)

[
w(sJ)

]

≤ sup
τ∈T σ

Eτ

[J−1∑
t=0

λtc(st, dt(st), st+1)
]

+ ‖v̄‖wαw(s),

where the last inequality follows from Assumption 4.2.3. In fact, for any positive integer m

and n = mJ − 1, we have

v̄(s0) ≤ sup
τ∈T σ

Eτ

[mJ−1∑
t=0

λtc(st, dt(st), st+1)
]

+ ‖v̄‖wαmw(s0).

Let m→∞ to obtain

v̄(s) ≤ sup
τ∈T σ

Eτ

[∞∑
t=0

λtc(st, dt(st), st+1)
]

= vσ(s) for all s ∈ S.

90

Since the policy σ ∈ Π was arbitrary, we have

v̄(s0) ≤ inf
σ∈Π

vσ(s0) for all s0 ∈ S. (4.8)

We now justify that this inequality cannot be strict. Given ε > 0, we show that there there

exists a policy σ such that v̄(s) ≥ vσ(s)− ε/(1− λ). For any state s, there exists an action

a(s) ∈ A(s) such that

v̄(s) = L(v̄)(s) > sup
p∈Pa(s)

s

Ep

[
c(s, a(s), s′) + λv̄(s′)

]
− ε.

We use these actions a(s) to define a decision-rule d : S → A(s), with d(s) = a(s). Further,

define a stationary policy σ = (d, d, . . .) ∈ Π. Fix a state s0 ∈ S. Then, by construction,

v̄(s0) > sup
p0∈T d

Ep0

[
c(s, d(s), s1) + λv̄(s1)

]
− ε

≥ sup
p0∈T d

Ep0

[
c(s, d(s), s1) + λ

(
sup

p1∈T d
Ep1

[
c(s1, d(s1), s2) + λv̄(s2)

]
− ε
)]
− ε

= sup
p0∈T d

Ep0

[
c(s, d(s), s1) + λ

(
sup

p1∈T d
Ep1

[
c(s1, d(s1), s2) + λv̄(s2)

])]
− (1 + λ)ε

= sup
(p0,p1)

∈T d×T d

E(p0,p1)

[
c(s, d(s), s1) + λc(s1, d(s1), s2) + λ2v̄(s2)

])]
− (1 + λ)ε.

Repeating this argument n times gives

v̄(s0) ≥ sup
(p0,...,pn)

∈T d×...×T d

E(p0,...,pn)

[n∑
t=0

λtc(st, d(st), st+1) + λn+1v̄(sn+1)
]
− (1 + . . .+ λn)ε

≥ sup
(p0,...,pn)

∈T d×...×T d

E(p0,...,pn)

[n∑
t=0

λtc(st, d(st), st+1)
]

− sup
(p0,...,pn)

∈T d×...×T d

E(p0,...,pn)

[
λn+1(−v̄(sn+1)

]
− (1 + . . .+ λn)ε.

91

Here, we have used the property that sup(f − g) ≥ sup f − sup g for any functions f and g.

Since −v̄(sn+1) ≤ |v̄(sn+1)| ≤ ‖v̄‖ww(sn+1), it follows that

v̄(s0) ≥ sup
(p0,...,pn)

∈T d×...×T d

E(p0,...,pn)

[n∑
t=0

λtc(st, d(st), st+1)
]

− λn+1‖v̄‖w sup
(p0,...,pn)

∈T d×...×T d

E(p0,...,pn)

[
w(sn+1)

]
− (1 + . . .+ λn)ε.

Once again, for n = mJ − 1, we have

v̄(s0) ≥ sup
(p0,...,pn)

∈T d×...×T d

E(p0,...,pn)

[n∑
t=0

λtc(st, d(st), st+1)
]
− λmJ‖v̄‖wαmw(s0)

]
− (1 + . . .+ λn)ε.

Letting m→∞, we have

v̄(s0) ≥ sup
τ∈T σ

Eτ

[∞∑
t=0

λtc(st, d(st), st+1)
]
− ε

1− λ
.

Hence,

v̄(s) ≥ vσ(s)− ε

1− λ
for all s ∈ S. (4.9)

Thus, there exists a policy σ whose value is at most ε/(1 − λ) greater than v̄. Since ε > 0

was arbitrary, we conclude that v̄ must be equal to the infimum in (4.8). This completes the

proof.

As in [28], this theorem leads to two useful corollaries. The first states that the value of a

statioanry policy can be computed using a robust Bellman evaluation operator. The second

result states that given ε > 0, there exists a stationary policy such whose value is at most

ε greater than the optimal. Consequently, it is sufficient to solve the MDPs over stationary

policies alone.

92

Corollary 4.3.3. (a) Given a decision-rule d, the value of the stationary policy σ = (d, d, . . .)

is given by

vσ(s) = sup
p∈Pds

Ep[c(s, d(s), s′) + λvσ(s′)], for all s ∈ S.

(b) For all ε > 0, there exists a decision-rule d and a stationary policy σ = (d, d, . . .) such

that

v∗(s) ≥ vσ(s)− ε.

Proof. The first result follows from Theorem 4.3.2 by choosing A(s) = {d(s)} for all s. The

second result was established in the proof of Theorem 4.3.2; see Equation (4.9) and note

that v̄ = v∗.

Thus, we have established that the optimal value function for a robust MDP with un-

bounded immediate costs can be recovered from the robust Bellman equations. Moreover,

an optimal policy can then be constructed by choosing actions from the argmin set in the

Bellman equations for each state. We expect that the natural methods of policy and value

iteration can be employed here as well, but there convergence behavior remains to be verified.

The standard methods would also encounter implementability issues as in the bounded-cost

case. As such, the eventual goal is to devise a convergent, implementable approximate policy

iteration algorithm akin to the previous chapters, for this class of problems as well. Some

immediate hurdles in this task arise from the fact that all expectations in the technical results

from Chapter 2 relied on the exponential decay of the λT terms. This role is now played

by the parameter α, so the expectations have to be dealt with in increments of J . This

further complicates the algorithmic computation of a bound like δ̄ that guarantees sufficient

improvement in the policy update step. Nonetheless, developing a practical way of solving

unbounded-cost robust MDPs will be a valuable generalization of this work.

93

Chapter 5

A ROBUST MULTI-PERIOD NEWSVENDOR MODEL WITH
INVENTORY-BALANCE CONSTRAINTS

5.1 Introduction

In recent years, robust optimization has steadily gained in popularity as a successful approach

to difficult problems of optimization under uncertainty; an overview of robust optimization

can be found in Ben-Tal et al. [9]. An area that has benefited significantly is inventory

management, and our paper contributes to this stream. We study a generic multiple period

inventory management problem that maximizes profit in a Newsvendor framework with

inventory balance constraints, where sale revenues as well as ordering, holding, and shortage

costs are captured. Our uncertainty sets are generic, but they can be parameterized to form

various uncertainty sets, motivated by probabilistic limit theorems, that have recently gained

popularity. Notably, we are able to derive closed-form solutions for our general problem.

Furthermore, our model can be applied in both a static setting as well as in a dynamic rolling

horizon manner. Our paper is related to four streams of literature: 1) robust inventory cost

minimization, 2) robust newsvendor models, 3) design of robust uncertainty sets, and 4)

dynamic robust optimization. We position our research relative to the most relevant papers

in each of these streams.

5.1.1 Robust Inventory Cost Minimization

One of the first robust inventory management models, focused on minimizing cumulative or-

dering, holding and shortage costs over a finite horizon, is Bertsimas and Thiele [11], which

applies the fundamental constructs of Bertsimas and Sim [10], such as “budgets of uncer-

tainty”. Bienstock and Özbay [14] extends Bertsimas and Thiele [11] in various directions.

94

Chen et al. [18] studies generic robust uncertainty sets allowing for asymmetry and See and

Sim [39] analyzes a “factor-based” model of uncertainty; both these approaches result in a

non-robust second-order cone counterpart. Wagner [44] studies a similar cost minimization

problem, except that the only property known about demand is non-negativity. Ardestani-

Jaafari and Delage [2], extending the ideas from Gorissen and Hertog [24], analyzes more

general robust optimization problems involving sums of piecewise linear functions, which can

be applied to inventory management problems. Mamani et al. [31] studies a similar problem,

except that the uncertainty sets are motivated by the central limit theorem, which results

in closed-form solutions. Solyalı et al. [41] proposes a new robust formulation of inventory

control based on ideas from facility location. Wagner [45] provides a continuous-time formu-

lation of a similar problem, where the uncertainty set is motivated by the strong law of large

numbers. Our paper differs from this stream in that we introduce revenues into the models

via a Newsvendor approach, so that we maximize profit rather than minimize cost.

5.1.2 Robust Newsvendor Models

A popular approach for studying a robust Newsvendor model is to apply distributionally

robust optimization: one assumes that the mean and variance of demand are known, but the

distribution is not, and a max-min approach over all probabilistic distributions that have

the given mean and variance is applied. Scarf [36] derives the optimal order quantity for

the Newsvendor Problem under this scenario. Perakis and Roels [34] extends this setup

to allow more (or less) information to be known about the demand distribution under a

regret formulation and Natarajan et al. [32] analyzes similar extensions under a max-min

approach over multiple products. Further examples of this style of research can be found

in the comprehensive literature review of Natarajan et al. [32]. Our paper differs from

this stream in that we apply uncertainty-set robust optimization techniques, rather than

distributionally robust techniques; the value of our approach is that we can introduce and

tractably analyze inventory balance constraints for a multiple period Newsvendor model.

Note that Vairaktarakis [42] also utilizes uncertainty-set robust optimization to study the

95

Newsvendor problem, under either interval demand uncertainty or under a discrete set of

demand scenarios; however, this paper only considers a single period and inventory balance

constraints are not considered.

5.1.3 Design of Robust Uncertainty Sets

In early robust optimization papers, the uncertainty sets were selected to be interval, poly-

hedral, ellipsoidal, or, more generally, simply convex. More recently, researchers have at-

tempted to design uncertainty sets that mimic the structure of limit theorems of probability.

Bertsimas et al. [13] analyzes queuing networks with a robust uncertainty set motivated by

the probabilistic law of the iterated logarithm. Bandi and Bertsimas [3] focuses on study-

ing uncertainty sets motivated by the central limit theorem, which is applied in detailed

investigations of option pricing [5], auction design [4], queueing theory [6, 7], and inventory

management [31]. Wagner [45] uses the strong law of large numbers to motivate an uncer-

tainty set in an inventory cost minimization context. Our paper continues this stream in

that we consider a generic uncertainty set, which can be parameterized to result in many of

the above sets.

5.1.4 Dynamic Robust Optimization

Ben-Tal et al. [8] studies an adjustable robust optimization problem, where variable values

can be changed once unknowns become realized; this problem is shown to be NP-hard. Con-

sequently, researchers have focused on approximations, such as an affinely adjustable robust

optimization model, where the focus is to find optimal policies that are affine in the uncertain

parameters. Bertsimas et al. [12] proves the optimality of affine policies for a general class

of multi-stage robust optimization models where unknown parameters are constrained to lie

in intervals; this research is extended by Iancu et al. [27], which more fully characterizes the

problem structures where affine policies are optimal. Another avenue of approximation is to

apply a static model in a rolling horizon framework. Mamani et al. [31] takes this approach

in an inventory cost minimization context, and exhibits better performance than Bertsimas

96

and Thiele [11] and Bertsimas et al. [12] under correlated demands. Solyalı et al. [41] also

takes this approach, which outperforms Bertsimas and Thiele [11], Ben-Tal et al. [8], See

and Sim [39], and others. Wagner [45] studies three rolling horizon contexts, which depend

on whether or not the observed demand stream is consistent with the original robust uncer-

tainty set. In our paper we adopt this rolling horizon approach to design dynamic strategies,

though we are the first to do so for a multiple period Newsvendor problem with inventory

balance constraints.

The only paper, to our knowledge, that combines a non-stochastic Newsvendor framework

with a multiple period setting and inventory balance constraints is Wagner [43]; however, this

paper approaches the problem via online optimization where nothing is known about demand

other than non-negativity, which leads to overly conservative solutions. In contrast, our

model allows the introduction of partial knowledge of demand, such as the mean and standard

deviation; furthermore, our model admits parameters than can control the conservatism of

the solution.

5.2 Model

Consider a seller managing the inventory of a single product over n periods. For j ∈

{1, 2, . . . , n}, let dj ≥ 0 be the demand for this product in the j-th period, and let qj ≥ 0 be

the amount of new product that the seller purchases in the same period. Then the inventory

level Ij at the end of this period is Ij = Ij−1 + qj − dj, where the initial inventory level I0 is

assumed to be known. Ij can take any sign; a negative value of Ij indicates shortage while

a positive inventory level implies a surplus. Both unmet demands and surplus inventory are

carried over to the next period. Thus, the total demand which must be satisfied in period

j is dj plus any demand which has been carried over from the previous period. Similarly,

the total amount of the product available for sale in period j is the sum of qj and any in-

ventory being held from period j − 1. Therefore, the amount of inventory sold in period j is

min{dj + I−j−1, qj + I+
j−1} (where a+ = max{a, 0}, a− = max{−a, 0} and a = a+− a− for any

a ∈ R). Let q = (q1, . . . , qn) be the vector of order quantities, and d = (d1, . . . , dn) be the

97

demand vector. Also, let Qj =
j∑
i=1

qi and Dj =
j∑
i=1

di be the cumulative order quantity and

cumulative demand up to period j respectively. If r ≥ 0 is the sale revenue per unit, then

the total revenue accrued over n periods is

R(q, d) =
n∑
j=1

r ·min{dj + I−j−1, qj + I+
j−1} = r

(n∑
j=1

min{0,−Ij}+ qj + I+
j−1

)
= r
(n∑
j=1

−I+
j + qj + I+

j−1

)
= r
(
I+

0 +Qn − I+
n

)
. (5.1)

Next, we compute the total cost incurred over the entire horizon. The seller tries to avoid

both excess inventory as well as shortage, and this is modeled by defining costs associated

with both these phenomena. Suppose a holding cost of h ≥ 0 per unit per period is incurred

whenever the order quantities exceed the demand and the inventory level is positive. Simi-

larly, let s ≥ 0 be the shortage cost per unit per period which applies only when the demand

from period j is not satisfied and Ij < 0. Finally, let c ≥ 0 be the ordering cost per unit.

Then, the total cost for order quantities q = (q1, . . . , qn) and demand d = (d1, . . . , dn), is

C(q, d) =
n∑
j=1

cqj + hI+
j + sI−j . (5.2)

The seller’s objective is to maximize profit. The profit earned over the entire horizon is

Π(q, d) = R(q, d) − C(q, d). The following lemma computes a convenient expression for the

total profit which helps us formulate the profit maximization problem as a linear program

(LP).

Lemma 5.2.1 (Profit function). For a demand vector d and order quantities q, define

yj = max{(h+ δjnc)(Qj −Dj + I0), (s+ δjn(r − c))(Dj −Qj − I0)}, j = 1, . . . , n, (5.3)

where δjn is the kronecker delta which takes the value 1 when j = n, and 0 otherwise. Then,

98

the profit function is given by

Π(q, d) = cI+
0 + (r − c)I−0 + (r − c)Dn −

n∑
j=1

yj. (5.4)

Proof. Proof:

Π(q, d) = R(q, d)− C(q, d)

= r(I+
0 +Qn − I+

n)− cQn −
n∑
j=1

(hI+
j + sI−j)

= rI+
0 + (r − c)Qn − rI+

n −
n∑
j=1

(hI+
j + sI−j)

= rI+
0 + (r − c)(Dn − I0) + (r − c)(Qn −Dn + I0)− rI+

n −
n∑
j=1

(hI+
j + sI−j)

= rI+
0 − (r − c)I0 + (r − c)Dn + (r − c)In − rI+

n −
n∑
j=1

(hI+
j + sI−j)

= rI+
0 − (r − c)(I+

0 − I−0) + (r − c)Dn + (r − c)(I+
n − I−n)− rI+

n −
n∑
j=1

(hI+
j + sI−j)

= cI+
0 + (r − c)I−0 + (r − c)Dn − cI+

n − (r − c)I−n −
n∑
j=1

(hI+
j + sI−j)

= cI+
0 + (r − c)I−0 + (r − c)Dn −

n∑
j=1

((h+ δjnc)I
+
j + (s+ δjn(r − c))I−j)

= cI+
0 + (r − c)I−0 + (r − c)Dn −

n∑
j=1

max{(h+ δjnc)Ij,−(s+ δjn(r − c))Ij}.

Substituting Ij = Qj −Dj + I0 for all j, we rewrite

Π(q, d) = cI+
0 + (r − c)I−0 + (r − c)Dn

−
n∑
j=1

max{(h+ δjnc)(Qj −Dj + I0), (s+ δjn(r − c))(Dj −Qj − I0)}.

99

Finally, using the definition of yj from (5.3) gives the desired result.

The seller’s goal is to find the optimal quantity to order in each period so as to maximize

the total profit. The terms outside the summation in (5.4) are constant for any q, and

the optimal order quantity is independent of these terms. Therefore, maximizing the profit

is equivalent to solving
(

min
n∑
j=1

yj

)
over all feasible vectors q ≥ 0. Intuitively, the seller

tries to simultaneously minimize both the terms inside the max in (5.3). The first term,

being positive only when Qj + I0 > Dj, indicates the seller’s aversion to ordering too much

inventory which would incur a holding cost. Since the purchase cost for each period gets

added up, the parameter c appears only in the last period. Similarly, the second term is

positive only when Qj+I0 < Dj, that is, when the quantity ordered in the first j periods (plus

the initial inventory) is insufficient to meet the demand in those periods. This is weighted

by the shortage cost. Once again, the term (r− c) appears only in period n to penalize any

lost revenue when the total demand Dn exceeds the total quantity Qn + I0 of the product.

Thus, the profit maximization problem can be formulated as the following LP.

min
n∑
j=1

yj

s.t. yj ≥ (h+ δjnc)(Qj + I0 −Dj), j = 1, . . . , n,

yj ≥ (s+ δjn(r − c))(Dj −Qj − I0) j = 1, . . . , n,

Qn ≥ Qn−1 ≥ . . . ≥ Q1 ≥ 0.

(5.5)

Note that we can drop the variables qj since they can be recovered from Qj. The nonnega-

tivity of qj is ensured by the constraints Qj ≥ Qj−1 for all j.

In the simplest model, we can assume that the demands are known and solving (5.5) will

yield the optimal order quantities (Qj = (Dj−I0)+ for all j). This, however, is unrealistic in

practice, as the true demand is almost never known a priori. Traditionally, this is resolved

by assuming that the parameters Dj in (5.5) are random variables with known distributions.

100

This gives rise to the classical stochastic newsvendor model, and optimal order quantities

are recovered by solving (5.5) through stochastic optimization techniques.

The demand distributions in the stochastic model are often constructed from historical

data using heuristics and statistical methods, and may not be exact. These errors, in turn,

may lead to suboptimal solutions. A robust optimization model accounts for this by instead

assuming that the unknown demand vector d simply lies in some set of plausible values called

the uncertainty set Ω. A robust optimization variant of the profit maximization problem in

(5.5) can be formulated as follows.

min
n∑
j=1

yj

s.t. yj ≥ (h+ δjnc)(Qj −Dj + I0), j = 1, . . . , n, ∀ d ∈ Ω,

yj ≥ (s+ δjn(r − c))(Dj −Qj − I0) j = 1, . . . , n, ∀ d ∈ Ω,

Qn ≥ Qn−1 ≥ . . . ≥ Q1 ≥ 0.

(5.6)

We remark that there are multiple ways of constructing a robust newsvendor model; hence

we only talk about ‘a’ (and not ‘the’) robust counterpart of (5.5). We define uncertainty

per constraint, which is the more common approach in the literature (e.g., Bertsimas and

Sim [10], Bertsimas and Thiele [11], Bienstock and Özbay [14], Ben-Tal et al. [8], Bertsimas

et al. [12], Mamani et al. [31], Solyalı et al. [41], Wagner [45], etc.). In this case, the terms

yj have a natural interpretation with respect to balancing the worst-case costs due to excess

as well as insufficient order quantities. Moreover, this leads to closed-form solutions with

intuitive properties and structure, as discussed in Section 5.3. However, other researchers

have focused on determining a single worst-case demand instance per model, as in Gorissen

and Hertog [24] and Ardestani-Jaafari and Delage [2].

Our robust model (5.6) has a linear objective function, and linear constraints, but the

constraints are indexed by d ∈ Ω – there are infinitely many of them. However, we observe

101

that for any j,

yj ≥ (h+ δjnc)(Qj −Dj + I0) ∀ d ∈ Ω ⇐⇒ yj ≥ max
d∈Ω

(h+ δjnc)(Qj −Dj + I0). (5.7)

The same is also true for the second set of constraints. Let Dj = min
d∈Ω

j∑
i=1

di and Dj =

max
d∈Ω

j∑
i=1

di be the smallest and largest possible cumulative demands up to period j respec-

tively. Then, using the observation in (5.7), the robust math program (5.6) can be reformu-

lated as the non-robust linear program

min
n∑
j=1

yj

s.t. yj ≥ (h+ δjnc)(Qj + I0 −Dj), j = 1, . . . , n,

yj ≥ (s+ δjn(r − c))(Dj −Qj − I0) j = 1, . . . , n,

Qn ≥ Qn−1 ≥ . . . ≥ Q1 ≥ 0.

This is equivalent to solving min
Q≥0

n∑
j=1

yj where

yj = max{(h+ δjnc)(Qj + I0 −Dj), (s+ δjn(r − c))(Dj −Qj − I0)}, j = 1, . . . , n.

The terms inside the max are worst-case analogues of those in the nominal case in (5.3).

The first term corresponds to a penalty for exceeding even the smallest possible demand,

while the second term indicates a cost incurred when the quantity ordered is insufficient

for the maximum possible demand. Finally, we define new variables Q̃j = Qj + I0 for all

102

j = 1, . . . , n, and Q̃ = (Q̃1, . . . , Q̃n) to formulate the equivalent LP

min
Q̃≥0

n∑
j=1

yj

s.t. yj ≥ (h+ δjnc)(Q̃j −Dj), j = 1, . . . , n,

yj ≥ (s+ δjn(r − c))(Dj − Q̃j) j = 1, . . . , n,

Q̃n ≥ Q̃n ≥ . . . Q̃1 ≥ I0.

(5.8)

5.3 Closed-form Solutions for an Arbitrary Uncertainty Set

In this section, we provide closed-form expressions for the optimal solution to the robust

newsvendor model (5.8), along with a proof of optimality. Here, we treat Dj and Dj,

j = 1, . . . , n, as known constants. Section 5.3.2 elaborates on how these may be obtained

analytically for some uncertainty sets which commonly arise in practice.

For any j, yj is the maximum of two linear functions of Q̃, and we first find the points of

intersections of these straight lines by equating the right-hand-sides of the first two inequal-

ities. For any j,

(h+ δjnc)(Q̃j −Dj) = (s+ δjn(r − c))(Dj − Q̃j)

=⇒ (s+ h+ δjnr)Q̃j = (s+ δjn(r − c))Dj + (h+ δjnc)Dj

=⇒ Q̃j =
(s+ δjn(r − c))Dj + (h+ δjnc)Dj

s+ h+ δjnr
.

Define

Qj =


hDj+sDj

s+h
, j < n

(h+c)Dj+(s+r−c)Dj
s+h+r

, j = n.

We emphasize that Qj are constants which can be computed once Dj and Dj are known.

They will serve as candidates for the optimal cumulative order quantity in period j when

such a solution is feasible. They also have certain properties that are desirable in the optimal

solution. In particular, we expect the optimal order quantities to be increasing in the per

103

unit revenue r and the shortage cost s, but decreasing in the purchase cost c and holding cost

h; these properties hold for Qj. Furthermore, note that Qj ≥ Qj−1 for all j = 2, . . . , n − 1,

since Dj−1 ≤ Dj and Dj−1 ≤ Dj. However, we do not necessarily have Qn ≥ Qn−1. We

may also have Q1 < I0. Hence, the solution Q̃j = Qj ∀ j may not be feasible. Nonetheless,

the quantities Qj are used to define an optimal solution to (5.8) as shown below. Let

Q̃∗ = (Q̃∗1, . . . , Q̃
∗
n) denote this solution.

Theorem 5.3.1. Let k be the largest integer in {1, 2, . . . , n} for which Qk−1 ≤ Qn (where

Q0 = min{I0, 0}).

(A) If (n− k)s ≤ h+ c, then the optimal solution to (5.8) is

Q̃∗j =

max{Qj, I0}, j = 1, . . . , k − 1,

max{Qn, I0}, j = k, . . . , n.

(B) If (n−k)s > h+c, let m be the smallest integer in {k, . . . , n−1} for which (n−m−1)s ≤

h+ c. Then the optimal solution to (5.8) is

Q̃∗j =

max{Qj, I0}, j = 1, . . . ,m− 1,

max{Qm, I0}, j = m, . . . , n.

Proof. Proof of Theorem 5.3.1: Note that k and m always exist. The theorem will be proved

using duality. The dual of (5.8) is

max
n∑
i=1

−(h+ δinc)Diui + (s+ δin(r − c))Divi + I0w1 (5.9)

s.t. −hui + svi + wi − wi+1 ≤ 0, i = 1, . . . , n− 1, (5.10)

−(h+ c)un + (s+ r − c)vn + wn ≤ 0, (5.11)

ui + vi = 1, i = 1, . . . , n,

ui, vi, wi ≥ 0, i = 1, . . . , n.

104

Since vi = 1− ui for all i, constraints (5.10) and (5.11) can be rewritten as

−(s+ h)ui + s+ wi − wi+1 ≤ 0, i = 1, . . . , n− 1, (5.12)

−(s+ h+ r)un + s+ r − c+ wn ≤ 0. (5.13)

The primal LP has primary variables Q̃j and auxiliary variables yj which, given Q̃, can

be solved for as below.

yj = max
{

(h+ δjnc)(Q̃j −Dj), (s+ δjn(r − c))(Dj − Q̃j)
}

= max
{

(h+ δjnc)(Q̃j −Dj)− (s+ δjn(r − c))(Dj − Q̃j), 0
}

+ (s+ δjn(r − c))(Dj − Q̃j)

= (s+ h+ δjnr) max
{
Q̃j −

(h+ δjnc)Dj) + (s+ δjn(r − c))(Dj]

(s+ h+ δjnr)
, 0
}

+ (s+ δjn(r − c))(Dj − Q̃j) (5.14)

=

(s+ δjn(r − c))(Dj − Q̃j), if Q̃j ≤ Qj,

(h+ δjnc)(Q̃j −Dj), if Q̃j ≥ Qj,

j = 1, . . . , n. (5.15)

We will prove the theorem separately for cases (A) and (B).

In case (A), k is the largest index in {1, . . . , n} so that Qk−1 ≤ Qn, and (n− k)s ≤ h+ c.

We will consider three sub-cases.

Case A-1: I0 < Qn.

Then, let l be the largest index in {0, 1, . . . , k − 1} for which I0 ≥ Ql. Therefore,

Ql ≤ I0 < Ql+1. The proposed solution takes the form

Q̃∗j =


I0, 1 ≤ j ≤ l,

Qj, l < j < k,

Qn, k ≤ j.

105

Note that Q̃∗j ≥ Qj for 1 ≤ j ≤ l, and Q̃∗j ≤ Qj for j > l. Therefore, we use Equation (5.15)

to compute

yj =

(h+ δjnc)(Q̃
∗
j −Dj), 1 ≤ j ≤ l,

(s+ δjn(r − c))(Dj − Q̃∗j), j > l,

=


h(I0 −Dj), 1 ≤ j ≤ l,

s(Dj −Qj), l < j < k,

(s+ δjn(r − c))(Dj −Qn), k ≤ j.

Thus, the primal objective function value is

zP = lhI0 − h
l∑

j=1

Dj +
sh

s+ h

k−1∑
j=l+1

(Dj −Dj) + s
n−1∑
j=k

Dj − (n− k)sQn

+
(h+ c)(s+ r − c)

s+ h+ r
(Dn −Dn).

Consider the dual solution

ui =



1, 1 ≤ i ≤ l,

s
s+h

, l < i < k,

0, k ≤ i < n,

s+r−c+(n−k)s
s+h+r

, i = n,

vi =



0, 1 ≤ i ≤ l,

h
s+h

, l < i < k,

1, k ≤ i < n,

h+c−(n−k)s
s+h+r

, i = n,

wi =


(l − i+ 1)h, 1 ≤ i ≤ l,

0, l < i < k,

(i− k)s, k ≤ i ≤ n.

Since 0 ≤ h+ c− (n− k)s ≤ h+ c ≤ r+h+ s, we have 0 ≤ vn ≤ 1. Furthermore, ui = 1− vi
for all i. Clearly, ui, vi, wi ≥ 0 for all i. We only need to verify constraints (5.12) and (5.13)

to guarantee feasibility of the dual solution.

1 ≤ i ≤ l :− (s+ h)ui + s+ wi − wi+1 = −(s+ h) + s+ (l − i+ 1)h− (l − i)h = 0,

l < i < k :− (s+ h)ui + s+ wi − wi+1 = −s+ s+ 0− 0 = 0,

k ≤ i < n :− (s+ h)ui + s+ wi − wi+1 = 0 + s+ (i− k)s− (i+ 1− k)s = 0,

i = n :− (s+ h+ r)un + (s+ r − c) + wn = −(s+ r − c)− (n− k)s+ (s+ r − c) + (n− k)s = 0.

106

Hence, the proposed dual solution is feasible, and its objective function value is

zD = −h
l∑

i=1

Di +
sh

s+ h

k−1∑
i=l+1

(Di −Di) + s

n−1∑
i=k

Di +
(s+ r − c)(h+ c)

s+ h+ r
(Dn −Dn)

− (n− k)s

s+ h+ r
((h+ c)Dn + (s+ r − c)Dn) + lhI0

= −h
l∑

i=1

Di +
sh

s+ h

k−1∑
i=l+1

(Di −Di) + s
n−1∑
i=k

Di +
(s+ r − c)(h+ c)

s+ h+ r
(Dn −Dn)

− (n− k)sQn + lhI0

= zP .

Hence, the proposed solution is optimal.

Case A-2: I0 ≥ Qn and I0 < Ql for some l.

In this case, the proposed solution is Q̃∗j = I0 for all j.

Let l be the smallest index in {k, k+ 1, . . . , n−1} for which Ql > I0. Therefore, Q̃∗j < Qj

for l ≤ j ≤ n− 1 and Q̃∗j ≥ Qj for all other j. Thus, from Equation (5.15),

yj =


h(I0 −Dj), j < l,

s(Dj − I0), l ≤ j ≤ n− 1,

(h+ c)(I0 −Dn), j = n.

The primal objective value for this solution is

zP = (l − 1)h− h
l−1∑
j=1

Dj + s

n−1∑
j=l

Dj − (n− l)sI0 + (h+ c)(I0 −Dn).

107

Consider the dual solution

ui =


1, i < l,

0, l ≤ i < n,

1, i = n,

, vi =


0, i < l,

1, l ≤ i < n,

0, i = n,

, wi =

h+ c− (n− l)s+ (l − i)h, i < l,

h+ c− (n− i)s, l ≤ i ≤ n.

Since l ≥ k, we have (n− l)s ≤ (n− k)s ≤ h + c. So ui, vi, wi ≥ 0 and ui + vi = 1 for all i.

Once again, verifying the constraints (5.12) and (5.13) gives us the following.

1 ≤ i < l :− (s+ h)ui + s+ wi − wi+1 = −(s+ h) + s+ (l − i)h− (l − i− 1)h = 0,

l ≤ i < n :− (s+ h)ui + s+ wi − wi+1 = 0 + s− (n− i)s+ (n− i− 1)s = 0,

i = n :− (s+ h+ r)un + (s+ r − c) + wn = −(s+ h+ r) + (s+ r − c) + (h+ c) = 0.

Once again, the proposed dual solution is feasible and the corresponding dual objective value

is

zD = −h
l−1∑
i=1

Di + s
n−1∑
i=l

Di − (h+ c)Dn + I0(h+ c− (n− l)s+ (l − 1)h) = zP .

Hence the solution is optimal.

Case A-3: I0 > Qj for all j ∈ {1, . . . , n}.

In this case, Q̃∗j = I0 ≥ Qj for all j. From Equation (5.15), we have

yj = (h+ δjnc)(Q̃
∗
j −Dj) = (h+ δjnc)(I0 −Dj) ∀ j

=⇒ zP =
n∑
j=1

yj = (nh+ c)I0 −
n∑
j=1

(h+ δjnc)Dj.

108

Consider the dual solution

ui = 1 ∀i, vi = 0 ∀i, wi = c+ (n− i+ 1)h ∀i.

Then, for i < n, −(s + h)ui + s + wi − wi+1 = −h + (n − i + 1)h − (n − i)h = 0, and

−(s + h + r)un + (s + r − c) + wn = −(s + h + r) + (s + r − c) + h + c = 0 as well. Thus,

the proposed dual solution is feasible, and the dual objective value is

zD =
n∑
i=1

−(h+ δinc)Di + I0(c+ nh) = zP .

Hence, the proposed solution is optimal.

This concludes the proof for case (A), and we now proceed to case (B). Note that this

arises only when k < n. So Qk−1 ≤ Qn < Qk. Also, m ≥ k is chosen so that (n−m− 1)s ≤

h+ c < (n−m)s.

As before, we consider three sub-cases.

Case B-1: I0 < Qm.

Let l be the largest index in {0, 1, . . . ,m − 1} for which I0 ≥ Ql. Therefore, Ql ≤ I0 <

Ql+1. The proposed solution is

Q̃∗j =


I0, 1 ≤ j ≤ l,

Qj, l < j < m,

Qm, m ≤ j.

109

From Equation (5.15), we have

yj =


h(Q̃∗j −Dj), j ≤ l,

s(Dj − Q̃∗j), l < j < n,

(h+ c)(Q̃∗n −Dn), j = n

=



h(I0 −Dj), j ≤ l,

s(Dj −Qj), l < j ≤ m,

s(Dj −Qm), m < j < n,

(h+ c)(Qm −Dn), j = n,

=⇒ zP =
n∑
j=1

yj = lhI0 − h
l∑

j=1

Dj +
sh

s+ h

m∑
j=l+1

(Dj −Dj) + s
n−1∑

j=m+1

Dj

+ (h+ c− (n−m− 1)s)Qm − (h+ c)Dn.

Consider the dual solution

ui =



1, i ≤ l,

s
s+h

, l < i < m,

s−(h+c)+(n−m−1)s
s+h

, i = m,

0, m < i < n,

1, i = n,

vi =



0, i ≤ l,

h
s+h

, l < i < m,

h+(h+c)−(n−m−1)s
s+h

, i = m,

1, m < i < n,

0, i = n,

wi =


(l − i+ 1)h, i ≤ l,

0, l < i ≤ m,

h+ c− (n− i)s, m < i ≤ n.

um = (n−m)s− (h+ c) ≥ 0 by choice of m. Also, (h+ c)− (n−m− 1)s ≥ 0 implies that

110

vm ≥ 0. In fact, ui, vi, wi ≥ 0 and ui + v1 = 1 for all i. Furthermore,

1 ≤ i ≤ l :− (s+ h)ui + s+ wi − wi+1 = −h+ (l − i+ 1)h− (l − i)h = 0,

l < i < m :− (s+ h)ui + s+ wi − wi+1 = −s+ s+ 0− 0 = 0,

i = m :− (s+ h)ui + s+ wi − wi+1 = (h+ c)− (n−m− 1)s− (h+ c) + (n−m− 1)s = 0,

m < i < n :− (s+ h)ui + s+ wi − wi+1 = s− (n− i)s+ (n− i− 1)s = 0,

i = n :− (s+ h+ r)un + (s+ r − c) + wn = −(s+ h+ r) + (s+ r − c) + (h+ c) = 0.

Therefore, this dual solution is feasible, and the objective function evaluates to

zD = −h
l∑

i=1

Di +
sh

s+ h

m∑
i=l+1

(Di −Di) + (h+ c− (n−m− 1)s)Qm

+ s
n−1∑

i=m+1

Di − (h+ c)Dn + I0lh = zP .

Hence, the solution is optimal.

Case B-2: Qm ≤ I0 and Ql > I0 for some l.

The proof follows exactly the same logic as Case A-2.

Then, Q̃∗j = I0 for all j. Let l be the smallest index in {m + 1, . . . , n − 1} for which

Ql > I0. Therefore, Q̃∗j < Qj for l ≤ j ≤ n − 1 and Q̃∗j ≥ Qj for all other j. Thus, from

Equation (5.15),

yj =


h(I0 −Dj), j < l,

s(Dj − I0), l ≤ j ≤ n− 1,

(h+ c)(I0 −Dn), j = n

=⇒ zP =
n∑
j=1

yj = (l − 1)h− h
l−1∑
j=1

Dj + s

n−1∑
j=l

Dj − (n− l)sI0 + (h+ c)(I0 −Dn).

111

Again, consider the dual solution

ui =


1, i < l,

0, l ≤ i < n,

1, i = n,

vi =


0, i < l,

1, l ≤ i < n,

0, i = n,

wi =

h+ c− (n− l)s+ (l − i)h, i < l,

h+ c− (n− i)s, l ≤ i ≤ n.

This solution is feasible as shown in proof of case A-2, and the corresponding objective

function value is

zD = −h
l−1∑
i=1

Di + s
n−1∑
i=l

Di − (h+ c)Dn + I0(h+ c− (n− l)s+ (l − 1)h) = zP .

Hence the solution is optimal.

Case B-3: I0 > Qj for all j ∈ {1, . . . , n}.

This proof is identical to Case A-3, and therefore omitted.

Theorem 5.3.1 provides an optimal solution to (5.8), and the following corollary uses it

to obtain the robust optimal order quantities q∗j in each period j.

Corollary 5.3.2 (Optimal Order Quantities). Let k be the largest integer in {1, 2, . . . , n}

for which Qk−1 ≤ Qn (where Q0 = min{I0, 0}).

(A) If (n− k)s ≤ h+ c, then the optimal order quantities are given by

q∗j =



(Qj − I0)+, j = 1,

(Qj − I0)+ − (Qj−1 − I0)+, j = 2, . . . , k − 1,

(Qn − I0)+ − (Qk−1 − I0)+, j = k,

0, j = k + 1, . . . , n.

112

(B) If (n−k)s > h+c, let m be the smallest integer in {k, . . . , n−1} for which (n−m−1)s ≤

h+ c. Then the optimal order quantities are given by

q∗j =


(Q1 − I0)+, j = 1,

(Qj − I0)+ − (Qj−1 − I0)+, j = 1, . . . ,m,

0, j = m+ 1, . . . , n.

Proof. Proof: From Theorem 5.3.1, Q̃∗1 = max{Q1, I0}. Therefore,

q∗1 = Q∗1 = Q̃∗1 − I0 = max{Q1, I0} − I0 = max{Q1 − I0, 0}+ I0 − I0 = (Q1 − I0)+.

The rest of the proof is similar. For any i and j, we have

max{Qi, I0} −max{Qj, I0} = (max{Qi − I0, 0}+ I0)− (max{Qj − I0, 0}+ I0)

= (Qi − I0)+ − (Qj − I0)+.

This, along with the fact that q∗j = Q∗j − Q∗j−1 = Q̃∗j − Q̃∗j−1 for j = 2, . . . , n, completes the

proof.

5.3.1 Discussion

Recall that the seller’s objective is to minimize the sum of the variables yj, where

yj = max
{

(h+ δjnc)(Qj + I0 −Dj), (s+ δjn(r − c))(Dj −Qj − I0)
}
, j = 1, . . . , n.

For each j, yj is the maximum of two costs, the first of which is incurred when the stock in

period j exceeds the worst-case cumulative demand through the first j periods, penalizing

any excess inventory. The second term corresponds to shortage and is incurred when the

113

worst-case cumulative demand is more than the current stock and the seller is unable to

fulfill it. Minimizing yj amounts to simultaneously minimizing both these terms, a task best

achieved when the two costs become equal. This happens when Qj = Qj + I0 for all j, which

yields order quantities

q̂1 = Q1 − I0, and q̂j = Qj −Qj−1 = Qj −Qj−1, for j = 2, . . . , n. (5.16)

Of course, these order quantities may not be feasible. Infeasibility occurs if q̂j is negative

for any j. Note that, for j = 2, . . . , n − 1, Qj ≥ Qj−1 by definition, so we always have

q̂2, . . . , q̂n−1 ≥ 0. In other words, only q̂1 and q̂n can potentially take negative values.

For simplicity, let us first consider the case where I0 = 0, that is, the seller has no initial

inventory. This further implies that q̂1 ≥ 0. When Qn ≥ Qn−1, the solution defined in

(5.16) is feasible and, in fact, optimal by case (A) of Corollary 5.3.2. On the other hand,

when Qn < Qn−1, we have q̂n < 0 and the solution proposed in (5.16) is no longer feasible.

Nonetheless, the quantities Qj help us in constructing an optimal solution.

Let k ∈ {1, 2, . . . , n − 1} be such that Qk−1 ≤ Qn < Qk (where Q0 = 0). Based on the

ordering of Qj, we now have several candidate solutions, corresponding to ordering up to

some period m ≥ k. A larger m corresponds both to ordering over a longer horizon, and also

to acquiring a larger quantity overall. The choice of m depends on the relationship between

the cost parameters. Intuitively, the seller would order smaller quantities if holding costs

and purchase costs are higher relative to shortage costs, even if that means forgoing some of

the demand. That is, if s is large relative to h + c, m is also large. The converse is true if

this relationship is reversed.

Corollary (5.3.2) makes this idea more precise. The per-unit shortage cost s is a positive

number and lies between some consecutive multiples of h + c. If s ≤ 1
n−k (h + c), holding

and purchase costs outweigh shortage costs and the seller only orders the product until

period k and then stops; the total amount ordered over the entire horizon is Qn. However,

if 1
n−k (h + c) < s ≤ 1

n−(k+1)
(h + c), the shortage costs are more significant than in the

114

previous case. The seller still orders up to period k but the final cumulative order quantity

is Qk > Qn. Let us go one step further. If 1
n−(k+1)

(h+ c) < s ≤ 1
n−(k+2)

(h+ c), the shortage

costs carry even more weight. Consequently, the seller orders up to period k + 1 and the

total quantity ordered is Qk+1 ≥ Qk. In general, suppose 1
n−m(h + c) < s ≤ 1

n−(m+1)
(h + c)

for some m ∈ {k, . . . , n−1} (where 1/0 =∞). A larger value of m indicates a greater weight

on shortage costs, so the seller orders up to period m. The cumulative quantity ordered over

the entire horizon is Qm and it increases with m. Observe that no new product is ordered

in the last period in any case.

Finally, if I0 6= 0, the optimal quantities in the above discussion can be viewed as ‘target’,

or base-stock, inventory levels. Suppose Qi was the optimal cumulative order quantity in

period j with zero initial inventory (where i is not necessarily equal to j). If I0 happens to

be larger than Qi, the seller already has sufficient stock and no more product is ordered in

period j. On the other hand, if I0 < Qi, the optimal cumulative order quantity for period j

is Qi− I0. Thus, the seller orders enough product in period j to make up the difference and

bring the current stock level up to Qi. This holds even when I0 < 0 indicating unfulfilled

demand at the beginning itself. This is particularly useful in the dynamic variant in Section

5.3.3.

Figure 5.3.1 illustrates the main result on a toy problem with 7 periods. The quantities

Q∗j + I0 are plotted versus j. For j > 1, the jump from period j − 1 to j gives the optimal

quantity to order in period j. Hence, an incoming flat line indicates that no product is ordered

in period j. The left column corresponds to the I0 = 0 case while the right column illustrates

the case where there is some positive initial inventory. In this example, Q4 < I0 < Q5. The

case with negative inventory is not illustrated but the general behavior is as in the second

column. The top row is for the case where Qn ≥ Qn−1. In the examples on the bottom row,

Qk−1 ≤ Qn < Qk for k = 4. The multiple curves in this case correspond to different values

of m depending on the ratio of s to c+ h.

In Figure 5.1a, we simply have Q∗j = Qj for all j. In Figure 5.1b, no product is ordered

in the first four periods where the initial inventory level I0 exceeds the ‘target’ levels Qj. In

115

1 2 3 4 5 6 7

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

(a) I0 = 0 and Qn ≥ Qn−1.

1 2 3 4 5 6 7

Q
1

Q
2

Q
3

Q
4

I
0

Q
5

Q
6

Q
7

(b) Q4 < I0 < Q5 and Qn ≥ Qn−1.

1 2 3 4 5 6 7

Q
1

Q
2

Q
3

Q
7

Q
4

Q
5

Q
6

s

c+ h
≤

1

3

1

3
<

s

c+ h
≤

1

2

1

2
<

s

c+ h
≤ 1

1 <
s

c+ h

(c) I0 = 0 and Q3 ≤ Q7 < Q4.

1 2 3 4 5 6 7

Q
1

Q
2

Q
3

Q
7

Q
4

I
0

Q
5

Q
6

s

c+ h
≤

1

3

1

3
<

s

c+ h
≤

1

2

1

2
<

s

c+ h
≤ 1

1 <
s

c+ h

(d) Q4 < I0 < Q5 and Q3 ≤ Q7 < Q4.

Figure 5.1: An illustrative plot of Q∗j + I0 for a robust newsvendor model with seven periods
under various relations between the parameters.

period 5, only the difference Q5 − I0 is ordered to bring the stock up to the target level Q5.

Thereafter, the two cases are identical.

In Figure 5.1c, there is no initial inventory, and the four curves correspond to different

ranges on the ratio s/(c+h). As this ratio increases, the total quantity ordered also increases

and the product is ordered over a larger horizon as well. In Figure 5.1d, we again assume

116

that there is some positive initial inventory. In the lower two cases, with s/(c+h) ≤ 1/3 and

1/3 < s/(c + h) ≤ 1/2, the ‘target’ final order quantities are Q7 and Q4 respectively. Since

I0 exceeds these, no product is ordered at all. In the other two cases, product is ordered in

period 5 to make up the difference and bring the stock up to target levels, and the seller

then proceeds as in Case 5.1c.

In the end, we observe that the optimal order quantities defined in Corollary 5.3.2 are

identical to those obtained in Mamani et al. [31] when r = 0 (which implies c = 0). We also

remark that in some cases, the revenue and ordering cost parameters r and c do not appear

explicitly in the optimal order quantities. This may give the impression that the optimal

solution is independent of the same; but we note that there is an implicit dependence since

the indices k and m are functions of these parameters. In fact, Qn is increasing in r and

decreasing in c. So it is the relation between these and other cost parameters that determines

how Qn is ordered among the other points Qj, j 6= n.

5.3.2 Closed-form solutions for inner problems

The optimal order quantities in Corollary 5.3.2 are defined in terms of the cost and revenue

parameters, as well as the quantities Dj and Dj. Recall that Dj is the least possible cu-

mulative demand through period j over all possible demand vectors d ∈ Ω. Similarly, Dj is

the maximum cumulative demand up to period j. These can be computed by numerically

solving the following so-called ‘inner problems’ for all j.

Dj = min
j∑
i=1

di

s.t. d ∈ Ω,

Dj = max
j∑
i=1

di

s.t. d ∈ Ω.

The objective functions are linear in d, and these problems can easily be solved to arbitrary

accuracy, especially when Ω is chosen to be a closed, convex set. Even so, the optimal

solutions in Corollary 5.3.2 are easier to implement if the worst-case cumulative demands

are also available in closed-form. In this section, we describe a class of uncertainty sets which

117

frequently arises in practice, and explicitly compute Dj and Dj for these sets.

Consider an uncertainty set of the form

Ω =
{
d = (d1, . . . , dn) : A ≤

n∑
t=1

dt ≤ B, at ≤ dt ≤ bt, t = 1, . . . , n
}
, (5.17)

where the parameters A, B, at and bt, t = 1, . . . , n are chosen so that Ω is non-empty. In

particular, at ≤ bt for all t and A ≤ B. Since the demand must be nonnegative, let at ≥ 0 for

all t without loss of generality. Similarly, we can also assume that A ≥
n∑
t=1

at and B ≤
n∑
t=1

bt.

Many of the uncertainty sets studied in literature fall within this framework, and in the next

two lemmas, we obtain the optimal solutions for computing Dj and Dj for all j. We find

that the optimal solution for both of these quantities is independent of j.

Lemma 5.3.3. Let ι be the largest integer in {1, . . . , n} for which

A ≤
ι−1∑
t=1

at +
n∑
t=ι

bt and
ι∑
t=1

at +
n∑

t=ι+1

bt ≤ B. (5.18)

Let d∗ = (a1, . . . , aι−1, lι, bι+1, . . . , bn), where lι = A−
ι−1∑
t=1

at −
n∑

t=ι+1

bt. Then, Dj =
j∑
t=1

d∗t for

all j = 1, . . . , n.

Proof. Proof: We first prove by contradiction that such an ι must exist. Let IA ⊆ {1, . . . , n}

be the collection of indices for which the first inequality in (5.18) is satisfied. Since 1 ∈ IA,

this set is non-empty. Similarly, the set IB of indices which satisfy the second inequality in

(5.18) is also non-empty, as n ∈ IB. By definition, ι = max{i : i ∈ IA ∩ IB}.

Suppose ι does not exist. This can only happen if the intersection of IA and IB is

empty. Let ιA be the largest element of IB and ιB be the smallest element of IB. Then,

1 ≤ ιA < ιB ≤ n and ιA + 1 /∈ IA. Therefore,

ιA∑
t=1

at +
n∑

t=ιA+1

bt < A ≤ B =⇒ ιA ∈ IB,

118

which is a contradiction. Hence, IA ∩ IB 6= ∅, and ι as defined in the statement of the

lemma must exist.

Now, we verify the feasibility of the proposed solution. Clearly, at ≤ d∗t ≤ bt for all t 6= ι.

From the first inequality in Condition (5.18), we have that d∗ι = lι ≤ bι. Also, by choice of ι,

ι+ 1 does not satisfy Condition (5.18). So it must violate one of the two inequalities. Since

ι satisfies the second inequality, so must ι+ 1. Therefore, the first inequality in (5.18) must

be violated and we have

ι∑
t=1

at +
n∑

t=ι+1

bt < A =⇒ aι < A−
ι−1∑
t=1

at +
n∑

t=ι+1

bt = lι = d∗ι .

So at ≤ d∗t ≤ bt for all t, and
n∑
t=1

d∗t = A by construction. Hence, d∗ ∈ Ω, that is, the proposed

solution is feasible.

For the proof of optimality, we consider any other feasible solution d̂. Let Sj(d) =
j∑
t=1

dt

for any d ∈ Ω. Then, for j < ι, Sj(d̂) =
j∑
t=1

d̂t ≥
j∑
t=1

at =
j∑
t=1

d∗t = Sj(d
∗). Therefore,

Sj(d
∗) = min

d∈Ω
Sj(d) = Dj, that is, d∗ is an optimal solution for computing Dj. For j ≥ ι,

Sj(d
∗) =

ι−1∑
t=1

at +
(
A−

ι−1∑
t=1

at −
n∑

t=ι+1

bt

)
+

j∑
t=ι+1

bt = A−
n∑

t=j+1

bt.

Since d̂ ∈ Ω, we have

n∑
t=1

d̂t ≥ A =⇒ Sj(d̂) =

j∑
t=1

d̂t ≥ A−
n∑

t=j+1

d̂t ≥ A−
n∑

t=j+1

bt = Sj(d
∗),

since −d̂t ≥ −bt for all t. Thus, Sj(d
∗) ≤ Sj(d̂) for all d̂ ∈ Ω and all j = 1, . . . , n. It follows

that Dj =
j∑
t=1

d∗t for all j.

119

Lemma 5.3.4. Let ν be the largest integer in {1, . . . , n} for which

A ≤
ν∑
t=1

bt +
n∑

t=ν+1

at and
ν−1∑
t=1

bt +
n∑
t=ν

at ≤ B. (5.19)

Let d∗ = (b1, . . . , bν−1, uν , aν+1, . . . , an), where uν = B −
ν−1∑
t=1

bt −
n∑

t=ν+1

at. Then, Dj =
j∑
t=1

d∗t

for all j = 1, . . . , n.

Proof. Proof: The proof is similar to Lemma 5.3.3, and is omitted.

We now examine some special uncertainty sets motivated from the limit theorems in

probability and studied in the robust optimization literature. Limit theorems are used to

study the asymptotic behavior of sequences and series of random variables. They are partic-

ularly useful when the exact distribution of random variables is unknown, and only partial

information (like certain moments) is available.

Central Limit Theorem.

The Central Limit Theorem (CLT) is one of the most powerful and widely used results in

probability theory. If Xi, i = 1, 2, . . ., are independent and identically distributed (i.i.d.)

random variables with mean µ and standard deviation σ, the CLT states that the distri-

bution of the random variable
(n∑
i=1

Xi − nµ
)
/(
√
nσ) approaches that of a standard normal

distribution, as n increases. Viewing the demands dj as i.i.d. random variables with known

mean µ and standard deviation σ (but unknown distribution), Mamani et al. [31] uses the

CLT to formulate the uncertainty set described below.

ΩCLT =

{
(d1, . . . , dn) : − Γ ≤

n∑
t=1

dt − nµ
√
nσ

≤ Γ, µ− Γσ ≤ dt ≤ µ+ Γσ, t = 1, . . . , n

}
.

(5.20)

120

This is a special case of (5.17) with A = nµ −
√
nΓσ, B = nµ +

√
nΓσ, at = µ − Γσ and

bt = µ+ Γσ for all t, where we assume that µ−Γσ ≥ 0. Γ > 0 is a tunable parameter which

allows us to adjust the conservativeness of the robust approach. Note that Γ = 0 would

make ΩCLT a singleton set, and fix the demand in each period at the mean µ.

We now invoke Lemmas 5.3.3 and 5.3.4 to compute Dj and Dj for this uncertainty set.

By (5.18), ι is the largest index in {1, . . . , n} for which

nµ−
√
nΓσ ≤ (ι− 1)(µ− Γσ) + (n− ι+ 1)(µ+ Γσ)

and ι(µ− Γσ) + (n− ι)(µ+ Γσ) ≤ nµ+
√
nΓσ

⇐⇒ −
√
nΓσ ≤ (n− 2ι+ 2)Γσ and (n− 2ι)Γσ ≤

√
nΓσ

⇐⇒ n−
√
n ≤ 2ι ≤ n+

√
n+ 2.

A similar calculation using (5.19) shows that ν is the largest index in {1, . . . , n} for which

n−
√
n ≤ 2ν ≤ n+

√
n+ 2.

Thus, ι and ν coincide in this case, and we have ι = ν = bτc + 1, where τ = (n +
√
n)/2.

Moreover, a simple calculation gives

lι = µ+ Γσ − 2(τ − bτc)Γσ, uν = µ− Γσ + 2(τ − bτcΓσ).

Therefore,

DCLT
j = min

d∈ΩCLT

j∑
t=1

dt =

jµ− jΓσ, j ≤ bτc,

jµ− (2τ − j)Γσ, j > bτc

DCLT
j = max

d∈ΩCLT

j∑
t=1

dt =

j(µ+ Γσ), j ≤ bτc,

jµ+ (2τ − j)Γσ, j > bτc.

121

Our set ΩCLT is a special case of the partial-sum uncertainty sets considered in Mamani

et al. [31]. This allows us to get simple expressions for the inner-problem solutions, but we

note that these can also be derived from the formulas provided in that paper. From here,

we can directly use Corollary 5.3.2 to compute the optimal order quantities for each period.

Strong Law of Large Numbers.

The Strong Law of Large Numbers (SLLN) is another widely-used limit theorem about the

asymptotic behavior of the average of i.i.d. random variables. For i.i.d. random variables

X1, X2, . . . , with mean µ, the SLLN states that their average
n∑
i=1

Xi/n concentrates at the

mean µ almost surely as n→∞. This motivates the following SLLN-based uncertainty set.

ΩSL =

{
(d1, . . . , dn) : µ− ε ≤

n∑
t=1

dt

n
≤ µ+ ε, µ− δ ≤ dt ≤ µ+ δ, t = 1, . . . , n

}
. (5.21)

Here, δ and ε are tunable parameters such that 0 ≤ ε, δ ≤ µ. See Wagner [45] for a discussion

on how these may be chosen. As in section 5.3.2, a simple calculation shows that ι = ν.

Further, we get from Condition (5.18) that ι is the largest index for which

n(δ − ε)
2δ

≤ ι ≤ n(ε+ δ)

2δ
+ 1.

Thus, ι = bξc+ 1, where ξ = n(ε+ δ)/2δ. Moreover,

lι = (µ− δ)− nε− (n− 2ι)δ, uν = (µ+ δ) + nε+ (n− 2ν)δ.

Therefore, using Lemmas 5.3.3 and 5.3.4, we have

DSL
j =

j(µ− δ), j ≤ bξc,

jµ− nε− (n− j)δ, j > bξc,
, DSL

j =

j(µ+ δ), j ≤ bξc,

jµ+ nε+ (n− j)δ, j > bξc.

122

These are discrete analogs of the expressions for worst-case cumulative demand derived in

Wagner [45]. Once again, we can now use Corollary 5.3.2 to find the robust optimal order

quantities.

Law of Iterated Logarithms

The previous limit theorems are obtained by scaling the centralized sum of n i.i.d. random

variables by factors
√
nσ and n respectively. A third kind of scaling yields the law of iterated

logarithms (LIL). Define φ(n) =
√
n log log n for all n. For i.i.d. random variables Xi with

mean µ and variance σ2, the LIL describes the behavior of (
n∑
i=1

Xi−nµ)/σ
√

2φ(n). Bertsimas

et al. [13] uses the LIL to construct uncertainty sets, and we use the same idea here to define

ΩLIL as below.

ΩLIL =

{
(d1, . . . , dn) : − (1 + ε) ≤

n∑
t=1

dt − nµ

σ
√

2φ(n)
≤ (1 + ε), µ− δ ≤ dt ≤ µ+ δ, t = 1, . . . , n

}
.

(5.22)

Here, too, ε ≥ 0 and 0 ≤ δ ≤ µ are adjustable parameters. This set is also of the form (5.17),

with at = µ− δ, bt = µ+ δ, A = nµ− (1 + ε)σ
√

2φ(n) and B = nµ+ (1 + ε)σ
√

2φ(n). ι and

ν coincide, and take the value

ι = ν = bnδ + (1 + ε)σ
√

2φ(n)

2
c+ 1.

Moreover,

DLIL
j =

jµ− jδ, j < ι,

jµ− (1 + ε)σ
√

2φ(n)− (n− j)δ, j ≥ ι,

DLIL
j =

jµ+ jδ, j < ι,

jµ+ (1 + ε)σ
√

2φ(n) + (n− j)δ, j ≥ ι,

123

We remark that closed-form expressions for Djand Dj for LIL-based uncertainty sets are

not available in the literature. Here, these formulas can now be used in conjunction with

Corollary 5.3.2 to obtain the robust optimal order quantities.

5.3.3 Dynamic Variant

In the above setup, we solved a static robust optimization problem which finds the optimal

order quantities for every period in one shot. In practice, a seller may use observations from

the first k − 1 periods to inform his decision in the k-th period. This motivates a dynamic

variant of the robust model based on re-optimization.

At the end of period k − 1, the seller knows the demand in the first k − 1 periods

d̂1, . . . , d̂k−1, as well as the corresponding order quantities q̂1, . . . , q̂k−1. Consequently, the

inventory level Ik−1 at the end of period k − 1, given by Îk−1 =
k−1∑
j=1

(q̂j − d̂j) + I0, is also

known. Note that Îk−1 may be of any sign. This is used to define a new robust model for

the remaining n− k + 1 periods. The unknown demand for these periods now varies within

a projected uncertainty set Ωk, which comprises all those demand vectors in Ω whose first

k − 1 components match the observed demand. That is,

Ωk = Ω ∩ {(d1, . . . , dn) : di = d̂i, i = 1, . . . , k − 1}.

This yields an (n − k + 1)-period static robust optimization problem with known initial

inventory Îk−1, analogous to (5.6).

min
n∑
j=k

yj

s.t. yj ≥ (h+ δjnc)
(n∑
j=k

(qj − dj) + Îk−1

)
, j = k, . . . , n, ∀ (dk, . . . , dn) ∈ Ωk,

yj ≥ (s+ δjn(r − c))
(n∑
j=k

(dj − qj)− Îk−1

)
j = k, . . . , n, ∀ (dk, . . . , dn) ∈ Ωk,

qk, qk+1, . . . , qn ≥ 0.

124

Optimal solutions to this problem are obtained in closed-form in the same manner as in

the static case. Thus, the seller uses the original static model at the beginning of the first

period. In every subsequent period, he solves a new robust optimization problem taking

into account observations from the previous periods. This rolling-horizon framework is a

standard approach for studying dynamic variants of static optimization models; see Mamani

et al. [31] and Solyalı et al. [41] for more details.

5.4 Benchmarking with Computational Experiments

In the previous sections, we formulated a robust newsvendor model for profit maximization

and obtained optimal order quantities for the same. To the best of our knowledge, this is

the first model that accounts for revenue in addition to costs. In this section, we present

the results of numerical experiments in order to benchmark our model. Since a comparable

robust optimization model is not available in the literature, we employ a stochastic model

for these experiments.

5.4.1 A Stochastic Newsvendor Model

Recall that for a given vector of demands d, the problem of finding optimal order quantities

reduces to solving the following minimization.

min
Q≥0

n∑
j=1

max
{

(h+ δjnc)(Qj + I0 −Dj), (s+ δjn(r − c))(Dj −Qj − I0)
}
. (5.23)

In the stochastic model, demand is treated as a random variable, and the agent tries to find

order quantities which maximize his expected profit over the entire horizon. This corresponds

to minimizing the expected value of the sum in (5.23). Let Fj be the cdf of Dj =
j∑
i=1

di, and

125

let F = (F1, . . . , Fn). Then, the stochastic demand variant of (5.23) is

z∗S = min
Q≥0

EF

[
n∑
j=1

max
{

(h+ δjnc)(Qj + I0 −Dj), (s+ δjn(r − c))(Dj − (Qj + I0))
}]

= min
Q≥0

EF

[
n∑
j=1

(h+ δjnc)(Qj + I0 −Dj)
+ + (s+ δjn(r − c))(Dj − (Qj + I0))+

]

= min
Q≥0

n∑
j=1

EF

[
(h+ δjnc)(Qj + I0 −Dj)

+ + (s+ δjn(r − c))(Dj − (Qj + I0))+
]

= min
Q≥0

n∑
j=1

∞∫
0

(h+ δjnc)(Qj + I0 −Dj)
+dFj +

∞∫
0

(s+ δjn(r − c))(Dj − (Qj + I0))+dFj

= min
Q≥0

n∑
j=1

(h+ δjnc)

Qj+I0∫
0

(Qj + I0 −Dj)dFj + (s+ δjn(r − c))
∞∫

Qj+I0

(Dj − (Qj + I0))dFj.

(5.24)

Closed-form optimal solutions.

Let zS(Q) denote the objective function in (5.24). Then,

∂zS
∂Qj

=


h
Qj+I0∫

0

dFj − s
∞∫

Qj+I0

dFj, j 6= n,

(h+ c)
Qj+I0∫

0

dFj − (s+ r − c)
∞∫

Qj+I0

dFj, j = n

=

hFj(Qj + I0)− s(1− Fj(Qj + I0), j 6= n,

(h+ c)Fj(Qj + I0)− (s+ r − c)(1− Fj(Qj + I0), j = n

=

(s+ h)Fj(Qj + I0)− s, j 6= n,

(s+ h+ r)Fj(Qj + I0)− (s+ r − c), j = n

.

126

Also,

∂z2
S

∂Qi∂Qj

=

0, i 6= j,

(s+ h+ δjnr)fj(Qj + I0), i = j.

Thus, the Hessian of zS(Q) is positive definite, which implies that zS(·) is a convex function

over Q ≥ 0 and a local minimum must be the global minimum. Setting the partial derivatives

of zS equal to zero gives

Q̂j =

F
−1
j

(
s

s+h

)
− I0, j 6= n,

F−1
n

(
s+r−c
s+h+r

)
− I0, j = n.

(5.25)

Q̂ will serve as a candidate optimal solution, but we first check for feasibility. Q̂ is feasible

if Q̂n ≥ Q̂n−1 ≥ . . . ≥ Q̂1 ≥ 0. This ordering depends on the relation between the cdfs Fj,

which is established in the following lemma.

Lemma 5.4.1. The cumulative demands Dj are (stochastically) ordered as D1 ≤ D2 ≤ . . . ≤

Dn.

Proof. Proof: Let fDj and fdj be the probability density functions for Dj and dj respectively.

Note that Dj+1 = Dj + dj+1 for all j < n. Therefore, for any z > 0,

fDj+1
(z) =

z∫
0

fDj(z − y)fdj+1
(y)dy.

127

For x > 0, we have

Fj+1(x) =

x∫
0

fDj+1
(z) dz =

x∫
0

z∫
0

fDj(z − y)fdj+1
(y) dy dz

=

x∫
0

x∫
y

fDj(z − y)fdj+1
(y) dz dy (changing the order of integration)

=

x∫
0

 x∫
y

fDj(z − y) dz

 fdj+1
(y) dy =

x∫
0

 x−y∫
0

fDj(u) du

 fdj+1
(y) dy

=

x∫
0

Fj(x− y)fdj+1
(y) dy ≤ Fj(x)

x∫
0

fdj+1
(y) dy ≤ Fj(x).

Since this is true for all x > 0, it follows that Dj ≤ Dj+1.

Lemma 5.4.1 implies that F−1
j+1(y) ≥ F−1

j (y) for all real numbers y. It follows from

Equation (5.25) that Q̂1 ≤ Q̂2 ≤ . . . ≤ Q̂n−1. Therefore, infeasibility occurs if Q̂n < Q̂n−1, or

if Q̂j < 0 for some j. However, we notice that zS(Q) is increasing in each Qj since ∂zS
∂Qj

> 0.

So, whenever the value proposed in (5.25) is infeasible, Qj simply takes the smallest feasible

value. Therefore, the optimal solution Qs to the stochastic model is given by

Qs
j =

Q̂
+
j , j 6= n,

max{Q̂+
n , Q̂

+
n−1}, j = n.

(5.26)

The stochastic optimal order quantities are qs1 = Qs
1 and qsj = Qs

j −Qs
j−1 for j > 1.

5.4.2 Computational Experiments

We perform simulation experiments to compare our robust model to the stochastic one

described above. In order to compute the stochastic-optimal order quantities in (5.26), the

seller must know the demand distribution exactly. This is often not the case in practice, and

128

the robust model attempts to mitigate the effects of incorrect information. We mimic this

phenomenon by assuming that the stochastic model uses a misspecified demand distribution.

We consider two cases – one where the parametrized distribution is from the correct family

with incorrect parameter values, and the other where the parameter values are accurate but

the distribution is not.

Misspecified distribution:

In the first set of experiments, we examine the case where the assumed distribution F̂ in

the stochastic model is different from the true demand distribution F . We consider two

examples corresponding to the assumed demand distribution being a gamma distribution

and a negative binomial distribution respectively. These distributions were chosen because

they have a non-negative support and are closed under addition. Then, the cumulative

demand Dj for all j is also gamma and negative-binomially distributed respectively. This

is helpful because the optimal solution for the stochastic model uses the cdf Dj, which is

available in closed form for these two cases. An attractive feature of the robust model is that

it does not require any such distributional information.

We arbitrarily set the various model parameters as c = 1, h = 1, s = 1.5, n = 20,

r = 1.5, with the length of the horizon set at n = 20. The robust model employs the

CLT-based uncertainty sets defined in (5.20), using the same values of mean µ and standard

deviation σ as in the stochastic model. Recall that Γ ≥ 0 was a parameter used to adjust

the degree of conservativeness in the robust model. We repeat the experiment for values of

Γ in the set {0.5, 1, . . . , 4}. The stochastic optimal solutions do not depend on Γ, and the

variation is Γ allows us to explore the relative performance of the two models as a function

of the construction of the uncertainty sets.

We perform nsims = 2000 simulations. In each simulation, the true demand is generated

using a (truncated) normal distribution with the same mean (µ) and standard deviation (σ).

The realized profit is computed using the optimal order quantities from both the robust and

stochastic models. Two metrics are used to compare performance. The first metric, plotted in

129

Gamma
0.5 1 1.5 2 2.5 3 3.5 4

P
e

rc
e

n
ta

g
e

10

20

30

40

50

60

70

80
Percentage relative decrease in profit for stochastic vs. robust.

Gamma
Negative binomial

(a) The average relative reduction in profit in the
stochastic model vs. the robust model.

Gamma
0.5 1 1.5 2 2.5 3 3.5 4

P
e

rc
e

n
ta

g
e

70

75

80

85

90

95

100
Percentage of trials where robust outperforms stochastic.

Gamma
Negative Binomial

(b) The fraction of trials where the realized profit
for the robust model exceeds that from stochastic
model.

Figure 5.2: Numerical results for the case where the stochastic model assumes an incorrect
demand distribution with correct moments.

Figure 5.2a, measures the relative reduction in profit (as a percentage) on using the stochastic

model over the robust one, averaged over all the simulations. Thus, a positive value implies

that the robust model performs better on average. Figure 5.2b displays the fraction of trials

where the robust solution outperforms the other. The blue curves in these figures correspond

to the case when the stochastic model assumes that the demand in each period follows a

gamma distribution with shape parameter k = 1/5 and scale parameter θ = 2. Therefore,

the mean is µ = kθ = 0.4, and the standard deviation is σ =
√
kθ = 0.89. The red curves

show the results for the case where the stochastic model uses a negative binomial distribution

for the demand in each period, with probability of success p = 0.95 and number of failures

k = 1. In this case, µ = (1 − p)k/p = 0.0526, and σ =
√

(1− p)k/p = 0.2354. In both

cases, the robust model performs better on average. Moreover, the performance of the robust

130

model appears to peak around a mid-range value of Γ, which seems reasonable. A very small

value of Γ corresponds to too small an uncertainty set that is unable to hedge against adverse

affects of misspecifications in the data. On the other hand, a large value of Γ may be too

conservative leading to lower worst-case profits.

Misspecified distribution:

In the second set of experiments, we assume that the stochastic model correctly assumes that

the demand is gamma-distributed, but uses an incorrect estimate of the standard deviation.

The CLT-based uncertainty sets also use the same incorrect value of σ. We examine multiple

cases based on the relation between the true and assumed shape parameters for the gamma

distribution. As before, we choose k = 1/5 and θ = 2. Suppose the true shape parameter is

k̂ = δk. We performed the experiments for δ ∈ {1/2, 1, 3/2, 2}, and the results are plotted

in Figure 5.3. Note that the robust model only uses the information on moments while

the stochastic model additionally needs the distribution itself. In the case of misspecified

moments but correct distribution, one can argue that the stochastic model at least has

partially correct information. It is not unexpected, therefore, that the stochastic model

appears to perform better in this case. However, the observed behavior is more interesting

– the relative performance of the two methods changes as δ is varied. For the same scale

θ, a gamma distribution with a smaller shape-parameter stochastically dominates one with

a larger shape-parameter. Therefore, a larger value of k in the stochastic model leads to

larger optimal order quantities. When δ < 1, the stochastic model overestimates the shape-

parameter and the seller orders more product. On the other hand, σ increases with k. So

the CLT-based uncertainty set grows in size as k is increased, which may lead to overly

conservative robust solutions. However, as δ is increased, the uncertainty set gets narrower

while the stochastic model prescribes lower order quantities. This is one possible explanation

for the varying behavior, but the main takeaway from this experiment is that the robust

model is not universally better. In a real-world setting, the preferred model (stochastic or

robust) may depend on a variety of factors like the underlying demand distribution or the

131

Gamma
0.5 1 1.5 2 2.5 3 3.5 4

P
e

rc
e

n
ta

g
e

-70

-60

-50

-40

-30

-20

-10

0

10

20
Percentage relative decrease in profit for stochastic vs. robust.

delta = 0.5
delta = 1
delta = 1.5
delta = 2

(a) The average relative reduction in profit in the
stochastic model vs. the robust model.

Gamma
0.5 1 1.5 2 2.5 3 3.5 4

P
e

rc
e

n
ta

g
e

0

10

20

30

40

50

60

70

80

90
Percentage of trials where robust outperforms stochastic.

delta = 0.5
delta = 1
delta = 1.5
delta = 2

(b) The fraction of trials where the realized profit
for the robust model exceeds that from stochastic
model.

Figure 5.3: Numerical results for the case where the stochastic model assumes the correct
demand distribution with incorrect moments.

nature of inaccuracy in the estimated data.

5.5 Conclusion

In this chapter, we formulated a robust variant of the classical Newsvendor model which

accounts for sale revenues as well as purchase, holding and shortage costs. The resulting

profit maximization problem was reduced to solving an LP which can be solved analytically.

We provided closed-form expressions for the optimal order quantities, and their natural

dependence on the relations between the cost and revenue parameters was analyzed. We

also solved in closed-form the inner problems for a class of uncertainty sets that subsumes

many of the sets studied in the literature. Finally, we compared the performance of the

robust model to a stochastic one through numerical experiments.

132

BIBLIOGRAPHY

[1] C D Aliprantis and K C Border. Infinite-dimensional analysis: a hitchhiker’s guide.

Springer-Verlag, Berlin, Germany, 1994.

[2] A. Ardestani-Jaafari and E. Delage. Robust optimization of sums of piecewise linear

functions with application to inventory problems. Operations Research, 2016. forthcom-

ing.

[3] C. Bandi and D. Bertsimas. Tractable stochastic analysis in high dimensions via robust

optimization. Mathematical Programming, 134(1):23–70, 2012.

[4] C. Bandi and D. Bertsimas. Optimal design for multi-item auctions: A robust opti-

mization approach. Mathematics of Operations Research, 39(4):1012–1038, 2014.

[5] C. Bandi and D. Bertsimas. Robust option pricing. European Journal of Operational

Research, 239:842–853, 2014.

[6] C. Bandi, D. Bertsimas, and N. Youssef. Robust queueing theory. Operations Research,

63(3):676–700, 2015.

[7] C. Bandi, D. Bertsimas, and N. Youssef. Robust transient analysis of multi-server

queueing systems and feed-forward networks. Queueing Systems, 2018. Forthcoming.

[8] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust solutions

of uncertain linear programs. Mathematical Programming, 99(2):351–376, 2004.

[9] A Ben-Tal, L El Ghaoui, and A Nemirovski. Robust optimization. Princeton University

Press, Princeton, NJ, USA, 2009.

[10] D. Bertsimas and M. Sim. Price of robustness. Operations Research, 52(1):35–53, 2004.

133

[11] D. Bertsimas and A. Thiele. A robust optimization approach to inventory theory. Op-

erations Research, 54(1):150–168, 2006.

[12] D. Bertsimas, D. Iancu, and P. Parrilo. Optimality of affine policies in multi-stage

robust optimization. Mathematics of Operations Research, 35(2):363–394, 2010.

[13] D. Bertsimas, D. Gamarnik, and A. Rikun. Performance analysis of queueing networks

via robust optimization. Operations Research, 59(2):455–466, 2011.

[14] D. Bienstock and N. Özbay. Computing robust basestock levels. Discrete Optimization,

5(2):389–414, 2008.

[15] P Billingsley. Convergence of probability measures. John Wiley & Sons, Inc., New York,

NY, USA, 2nd edition, 1999.

[16] R Boucherie and N M van Dijk. Markov Decision Processes in Practice. Springer,

Cham, Switzerland, 2017.

[17] T Cheevaprawatdomrong, I E Schochetman, R L Smith, and A Garcia. Solution and

forecast horizons for infinite-horizon non-homogeneous Markov decision processes. Math-

ematics of Operations Research, 32(1):51–72, 2007.

[18] X. Chen, M. Sim, and P. Sun. A robust optimization perspective on stochastic pro-

gramming. Operations Research, 55(6), 2007.

[19] A Garcia and R L Smith. Solving nonstationary infinite horizon dynamic optimization

problems. Journal of Mathematical Analysis and Applications, 244:304–317, 2000.

[20] A Ghate. Infinite Horizon Problems. Wiley Encyclopedia of Operations Research and

Management Science, 2010.

[21] A Ghate. Circumventing the Slater conundrum in countably infinite linear programs.

European Journal of Operational Research, 246(3):708–720, 2015.

134

[22] A Ghate and R L Smith. A linear programming approach to nonstationary infinite-

horizon Markov decision processes. Operations Research, 61(2):413–425, 2013.

[23] A Ghate, D Sharma, and R L Smith. A shadow simplex method for infinite linear

programs, forthcoming. Operations Research, 58(4):865–877, 2010.

[24] B. Gorissen and D. Hertog. Robust counterparts of inequalities containing sums of

maxima of linear functions. European Journal of Operational Research, 227(1):30–43,

2013.

[25] W J Hopp, J C Bean, and R L Smith. A new optimality criterion for non-homogeneous

Markov decision processes. Operations Research, 35:875–883, 1987.

[26] R A Howard. Dynamic programming and Markov processes. PhD thesis, MIT, Cam-

bridge, MA, USA, 1960.

[27] D. Iancu, M. Sharma, and M. Sviridenko. Supermodularity and affine policies in dynamic

robust optimization. Operations Research, 61(4):941–956, 2013.

[28] G N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30

(2):257–280, 2005.

[29] David L. Kaufman and Andrew J. Schaefer. Robust modified policy iteration. INFORMS

Journal on Computing, 25(3):396–410, 2013. doi: 10.1287/ijoc.1120.0509. URL http:

//dx.doi.org/10.1287/ijoc.1120.0509.

[30] I Lee, M A Epelman, H E Romeijn, and R L Smith. Simplex algorithm for countable-

state discounted Markov decision processes. http://www.optimization-online.org/

DB_HTML/2014/11/4645.html, 2014.

[31] H. Mamani, S. Nassiri, and M. Wagner. Closed-form solutions for robust inventory

management. Management Science, 63(5), 2017.

135

[32] K. Natarajan, M. Sim, and J. Uichanco. Asymmetry and ambiguity in newsvendor

models. Management Science, 2018. Articles in Advance.

[33] A Nilim and L El Ghaoui. Robust control of markov decision processes with uncertain

transition matrices. Operations Research, 53(5):780–798, 2005.

[34] G. Perakis and G. Roels. Regret in the newsvendor model with partial information.

Operations Research, 56(1):188–203, 2008.

[35] M L Puterman. Markov Decision Processes : Discrete Stochastic Dynamic Program-

ming. John Wiley & Sons, New York, NY, USA, 1994.

[36] H. Scarf. A min-max solution of an inventory problem. In Studies in the Mathematical

Theory of Inventory and Production, pages 201–209. Stanford University Press, 1958.

[37] I E Schochetman and R L Smith. Infinite horizon optimization. Mathematics of Oper-

ations Research, 14(3):559–574, 1989.

[38] I E Schochetman and R L Smith. Finite dimensional approximation in infinite dimen-

sional mathematical programming. Mathematical Programming, 54(3):307–333, 1992.

[39] C. See and M. Sim. Robust approximation to multi-period inventory management.

Operations Research, 58(3):583–594, 2010.

[40] S Sinha, J Kotas, and A Ghate. Robust response-guided dosing. Operations Research

Letters, 44(3):394–399, 2016.

[41] O. Solyalı, J. Cordeau, and G. Laporte. The impact of modeling on robust inventory

management under demand uncertainty. Management Science, 62(4):1188–1201, 2016.

[42] G. Vairaktarakis. Robust multi-item newsboy models with a budget constraint. Inter-

national Journal of Production Economics, 66:213–226, 2000.

136

[43] M. Wagner. Fully distribution-free profit maximization: The inventory management

case. Mathematics of Operations Research, 35(4):728–741, 2010.

[44] M. Wagner. Online lot-sizing problems with ordering, holding and shortage costs. Op-

erations Research Letters, 39(2):144–149, 2011.

[45] M. Wagner. Robust inventory management: An optimal control approach. Operations

Research, 2018. Articles in Advance.

[46] Y Ye. The simplex and policy-iteration methods are strongly polynomial for the Markov

decision problem with a fixed discount rate. Mathematics of Operations Research, 36

(4):593–603, 2011.

